56 minutes for 5 people to paint 10 walls multiply by 5 to get 1 persondivide by 7 to get 7 peopledivide by 10 to get 1 wall multiply by 8 to get 8 walls(56)5*8)/(10*7) minutes for 7 people to paint 8 walls2240/70 = 32 minutes
Answer:
740 total students, 481 total girls
Step-by-step explanation:
Let x be the total number of students and y be the total number of girls
x -
You know that 35% of the students is 259 students. If you convert this into algebra, you can write : 0.35x = 259, after simplifying, you know that x = 740.
y-
You know that 35% of the students are boys, so 65% must be girls. You can say that 65% of x is y and write the equation 0.65(740)=y. After simplifying, you can see that y = 481.
I hope this helps :)
Answer:
Option d) 5 to the power of negative 5 over 6 is correct.
![\dfrac{\sqrt[3]{\bf 5} \times \sqrt{\bf 5}}{\sqrt[3]{\bf 5^{\bf 5}}}= 5^{\frac{\bf -5}{\bf 6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B%5Cbf%205%7D%20%5Ctimes%20%5Csqrt%7B%5Cbf%205%7D%7D%7B%5Csqrt%5B3%5D%7B%5Cbf%205%5E%7B%5Cbf%205%7D%7D%7D%3D%205%5E%7B%5Cfrac%7B%5Cbf%20-5%7D%7B%5Cbf%206%7D%7D)
Above equation can be written as 5 to the power of negative 5 over 6.
ie, 
Step-by-step explanation:
Given that cube root of 5 multiplied by square root of 5 over cube root of 5 to the power of 5.
It can be written as below
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{1}{3}} \times 5^{\frac{1}{2}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%20%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Ctimes%205%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{1}{3}+\frac{1}{2}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{2+3}{6}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B2%2B3%7D%7B6%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= 5^{\frac{5}{6}} \times 5^{\frac{-5}{3}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%205%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%20%5Ctimes%205%5E%7B%5Cfrac%7B-5%7D%7B3%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= 5^{\frac{5-10}{6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%205%5E%7B%5Cfrac%7B5-10%7D%7B6%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{5^5}= 5^{\frac{-5}{6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B5%5E5%7D%3D%205%5E%7B%5Cfrac%7B-5%7D%7B6%7D%7D)
Above equation can be written as 5 to the power of negative 5 over 6.
We first standardise

:
P(1224 >

)=P(

>

)
which reduces to finding P(Z > 1.2) = 0.115