The minimum or maximum value of a quantity are what are used to maximize or minimize a function.
<em>The method for finding these minimum or maximum value is linear programming.</em>
<em />
Take for instance, the following parameters:

Subject to:



The above is an illustration of a linear programming.
It is useful in the following areas:
- To formulate real life problems
- To get an optimal solution
- To maximize profit and minimize cost
- Etc
Read more about linear programming at:
brainly.com/question/14225202
<span>Answer:
(13 ranks, choose 2)*(4 from each rank, choose 2)
*(remaining 44 cards, choose 1) /(52 total, choose any 5)
= 13c2*(4c2)^2 *44 / 52c5 = 0.0475</span>
83,000 since 277 is not near another 1,000
Dbbsjajdshahdbhajabdbsjsbs
Answer:
![{27}^{ \frac{1}{3} } = \sqrt[3]{27} = \sqrt[3]{3 \times 3 \times 3} = \boxed{ 3}✓](https://tex.z-dn.net/?f=%20%7B27%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%3D%20%20%5Csqrt%5B3%5D%7B27%7D%20%20%3D%20%20%5Csqrt%5B3%5D%7B3%20%5Ctimes%203%20%5Ctimes%203%7D%20%20%3D%20%5Cboxed%7B%203%7D%E2%9C%93)
<h3>3. <em><u>3</u></em> is the right answer.</h3>