1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
1 year ago
15

F(x) = 2-4 Find f(2)

Mathematics
1 answer:
Jet001 [13]1 year ago
8 0

Answer:

-8

Step-by-step explanation:

So first off, x is 2-4. So that's the default. It would be -2. If you multiply -2 by 2, it is -4.

You might be interested in
BRAINLIEST ASAP! PLEASE HELP ME :)
jeyben [28]

<em>See above information</em>

I am joyous to assist you anytime.

7 0
3 years ago
Consider the points A(5, 3t+2, 2), B(1, 3t, 2), and C(1, 4t, 3). Find the angle ∠ABC given that the dot product of the vectors B
Vilka [71]

Answer:

66.42°

Step-by-step explanation:

<u>Given:</u>

A(5, 3t+2, 2)

B(1, 3t, 2)

C(1, 4t, 3)

BA • BC = 4

Step 1: Find t.

First we have to find vectors BA and BC. We do that by subtracting the coordinates of the initial point from the coordinates of the terminal point.

In vector BA B is the initial point and A is the terminal point.

BA = OA - OB = (5-1, 3t+2-3t, 2-2) = (4, 2, 0)

BC = OC - OB = (1-1, 4t-3t, 3-2) = (0, t, 1)

Now we can find t because we know that BA • BC = 4

BA • BC = 4

To find dot product we calculate the sum of the produts of the corresponding components.

BA • BC = (4)(0) + (2)(t) + (0)(1)

4 = (4)(0) + (2)(t) + (0)(1)

4 = 0 + 2t + 0

4 = 2t

2 = t

t = 2

Now we know that:

BA = (4, 2, 0)

BC = (0, 2, 1)

Step 2: Find the angle ∠ABC.

Dot product: a • b = |a| |b| cos(angle)

BA • BC = 4

|BA| |BC| cos(angle) = 4

To get magnitudes we square each compoment of the vector and sum them together. Then square root.

|BA| = \sqrt{4^2 + 2^2 + 0^2} = \sqrt{20} = 2\sqrt{5}

|BC| = \sqrt{0^2 + 2^2 + 1^2} = \sqrt{5}

2\sqrt{5}\sqrt{5}\cos{(m\angle{ABC})} = 4

10\cos{(m\angle{ABC})} = 4

\cos(m\angle{ABC}) = \frac{4}{10}=\frac{2}{5}

m\angle{ABC} = cos^{-1}{(\frac{2}{5})}

m\angle{ABC} = 66.4218^{\circ}

Rounded to two decimal places:

m\angle{ABC} = 66.42^\circ

3 0
2 years ago
HELPPPPPPPPPPPPPPPPP
igomit [66]
X=3
LOM and KOL are equivalent, so the equation is 43=6x+25 :)
5 0
2 years ago
Drone INC. owns four 3D printers (D1, D2, D3, D4) that print all their Drone parts. Sometimes errors in printing occur. We know
USPshnik [31]

Answer:

Step-by-step explanation:

Hello!

There are 4 3D printers available to print drone parts, then be "Di" the event that the printer i printed the drone part (∀ i= 1,2,3,4), and the probability of a randomly selected par being print by one of them is:

D1 ⇒ P(D1)= 0.15

D2 ⇒ P(D2)= 0.25

D3 ⇒ P(D3)= 0.40

D4 ⇒ P(D4)= 0.20

Additionally, there is a chance that these printers will print defective parts. Be "Ei" represent the error rate of each print (∀ i= 1,2,3,4) then:

P(E1)= 0.01

P(E2)= 0.02

P(E3)= 0.01

P(E4)= 0.02

Ei is then the event that "the piece was printed by Di" and "the piece is defective".

You need to determine the probability of randomly selecting a defective part printed by each one of these printers, i.e. you need to find the probability of the part being printed by the i printer given that is defective, symbolically: P(DiIE)

Where "E" represents the event "the piece is defective" and its probability represents the total error rate of the production line:

P(E)= P(E1)+P(E2)+P(E3)+P(E4)= 0.01+0.02+0.01+0.02= 0.06

This is a conditional probability and you can calculate it as:

P(A/B)= \frac{P(AnB)}{P(B)}

To reach the asked probability, first, you need to calculate the probability of the intersection between the two events, that is, the probability of the piece being printed by the Di printer and being defective Ei.

P(D1∩E)= P(E1)= 0.01

P(D2∩E)= P(E2)= 0.02

P(D3∩E)= P(E3)= 0.01

P(D4∩E)= P(E4)= 0.02

Now you can calculate the probability of the piece bein printed by each printer given that it is defective:

P(D1/E)= \frac{P(E1)}{P(E)} = \frac{0.01}{0.06}= 0.17

P(D2/E)= \frac{P(E2)}{P(E)} = \frac{0.02}{0.06}= 0.33

P(D3/E)= \frac{P(E3)}{P(E)} = \frac{0.01}{0.06}= 0.17

P(D4/E)= \frac{P(E4)}{P(E)} = \frac{0.02}{0.06}= 0.33

P(D2)= 0.25 and P(D2/E)= 0.33 ⇒ The prior probability of D2 is smaller than the posterior probability.

The fact that P(D2) ≠ P(D2/E) means that both events are nor independent and the occurrence of the piece bein defective modifies the probability of it being printed by the second printer (D2)

I hope this helps!

8 0
3 years ago
A bag contains 3 red marbles and 6 blue marbles. what is the probability of randomly selecting a red marble
DochEvi [55]
3/9 is your answer. 3+6=9 and there are 3 red marbles.
4 0
3 years ago
Other questions:
  • What is the answer!!!!!!!!!??????
    5·1 answer
  • Solve for x ???????????
    10·1 answer
  • HELPPPP ME PLEASEEEE!!!!
    7·2 answers
  • Can someone answer this and explain how they got the answer? I am really confused.
    11·1 answer
  • How to find the percent of 0.89
    10·2 answers
  • The equation f(x)= 2/3 x + 1 is giving me some hard times can anyone help?
    11·1 answer
  • <img src="https://tex.z-dn.net/?f=10%20%5Cdiv%20%20%5Csqrt%7B6x%7D%20" id="TexFormula1" title="10 \div \sqrt{6x} " alt="10 \div
    8·2 answers
  • A farmer with 1670 meters of fencing wants to enclose a rectangular plot that borders on a straight highway. If the farmer does
    10·1 answer
  • Melanie had 35 peaches left at her roadside fruit stand. She went to the
    15·1 answer
  • Combine like terms. y + 5e + 3y
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!