The height attained by the arrow is modelled as,
![h(t)=-16t^2-v_{\circ}t+h_{\circ}](https://tex.z-dn.net/?f=h%28t%29%3D-16t%5E2-v_%7B%5Ccirc%7Dt%2Bh_%7B%5Ccirc%7D)
Given that the initial height is 20 ft and the initial velocity is 179 ft per second,
![\begin{gathered} v_{\circ}=179 \\ h_{\circ}=20 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v_%7B%5Ccirc%7D%3D179%20%5C%5C%20h_%7B%5Ccirc%7D%3D20%20%5Cend%7Bgathered%7D)
Substitute the values,
![\begin{gathered} h(t)=-16t^2-(179)t+(20) \\ h(t)=-16t^2-179t+20 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20h%28t%29%3D-16t%5E2-%28179%29t%2B%2820%29%20%5C%5C%20h%28t%29%3D-16t%5E2-179t%2B20%20%5Cend%7Bgathered%7D)
When the arrow hits the ground its height will become zero,
![\begin{gathered} h(t)=0 \\ -16t^2-179t+20=0 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20h%28t%29%3D0%20%5C%5C%20-16t%5E2-179t%2B20%3D0%20%5Cend%7Bgathered%7D)
Applying the quadratic formula,
![\begin{gathered} t=\frac{-(-179)\pm\sqrt[]{(-179)^2-4(-16)(20)}}{2(-16)} \\ t=\frac{179\pm\sqrt[]{33321}}{-32} \\ t=\frac{179\pm182.54}{-32} \\ t=\frac{179+182.54}{-32},t=\frac{179-182.54}{-32} \\ t=-11.298,t=0.1106 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20t%3D%5Cfrac%7B-%28-179%29%5Cpm%5Csqrt%5B%5D%7B%28-179%29%5E2-4%28-16%29%2820%29%7D%7D%7B2%28-16%29%7D%20%5C%5C%20t%3D%5Cfrac%7B179%5Cpm%5Csqrt%5B%5D%7B33321%7D%7D%7B-32%7D%20%5C%5C%20t%3D%5Cfrac%7B179%5Cpm182.54%7D%7B-32%7D%20%5C%5C%20t%3D%5Cfrac%7B179%2B182.54%7D%7B-32%7D%2Ct%3D%5Cfrac%7B179-182.54%7D%7B-32%7D%20%5C%5C%20t%3D-11.298%2Ct%3D0.1106%20%5Cend%7Bgathered%7D)
Since time cannot be negative, we have to neglect the negative value.
Thus, it can be concluded that the arrow will hit the ground after 0.1106 seconds approximately.