Answer:
160 inches
Step-by-step explanation:
An octagon has 8 sides;
20*8=160
D because the shaded region has one side and subtract by pie and substitute to get this answer.
1 dimes are worth 10 cents.
Multiply.
6 * 10 = 60
Put in a fraction with the denominator given.
60/100
Reduce the fraction.
60/100
30/50
15/25
3/5
Best of Luck!
The formula of the volume of the rectangular prism:
V = length × width × height
We have:
Answer:
Given the mean = 205 cm and standard deviation as 7.8cm
a. To calculate the probability that an individual distance is greater than 218.4 cm, we subtract the probability of the distance given (i.e 218.4 cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) from 1. Therefore, we have 1- P(Z
). Using the Z distribution table we have 1-0.9573. Therefore P(X >218.4)= 0.0427.
b. To calculate the probability that mean of 15 (i.e n=15) randomly selected distances is greater than 202.8, we subtract the probability of the distance given (i.e 202.8cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) divided by the square root of mean (i.e n= 15) from 1. Therefore, we have 1- P(Z
). Using the Z distribution table we have 1-0.1378. Therefore P(X >202.8)= 0.8622.
c. This will also apply to a normally distributed data even if it is not up to the sample size of 30 since the sample distribution is not a skewed one.
Step-by-step explanation:
Given the mean = 205 cm and standard deviation as 7.8cm
a. To calculate the probability that an individual distance is greater than 218.4 cm, we subtract the probability of the distance given (i.e 218.4 cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) from 1. Therefore, we have 1- P(Z
). Using the Z distribution table we have 1-0.9573. Therefore P(X >218.4)= 0.0427.
b. To calculate the probability that mean of 15 (i.e n=15) randomly selected distances is greater than 202.8, we subtract the probability of the distance given (i.e 202.8cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) divided by the square root of mean (i.e n= 15) from 1. Therefore, we have 1- P(Z
). Using the Z distribution table we have 1-0.1378. Therefore P(X >202.8)= 0.8622.
c. This will also apply to a normally distributed data even if it is not up to the sample size of 30 since the sample distribution is not a skewed one.