x^2+y^2-4x-3y in polar form is r = 4r cos θ + 3r sin θ
<h3>How to convert to polar form</h3>
The conversion from rectangular to polar form is given by;
x = r cos θ
y = r sin θ
Given the expression as;
x² + y² -4x-3y
x² + y² = 4x + 3y
Now, substitute the values, we have
(r cos θ)² +( r sin θ)² = 4 ( r cos θ) + 3 ( r sin θ)
r² cos²θ + r² sin² θ = 4r cos θ + 3r sin θ
Factor out the r²
r² ( cos² θ + sin² θ) = 4r cos θ + 3r sin θ
Apply Pythagorean identity:
cos² θ + sin² θ = 1
Substitute into the expression
r² ( 1) = 4r cos θ + 3r sin θ
Set the expression equal to 0:
r² - 4r cos θ - 3r sin θ = 0
Factor out the r:
r ( r - 4 cos θ - 3 sin θ ) = 0
r = 0
r = 4r cos θ + 3r sin θ
Thus, x^2+y^2-4x-3y in polar form is r = 4r cos θ + 3r sin θ
Learn more about polar form here:
brainly.com/question/21538521
#SPJ1