Answer:
The value of x is
.
Step-by-step explanation:
Please look at the figure attached to get more clear solution.
We have given:
FG||CB
And the line that cut the parallel line is transversal so, here BA is transversal
And alternate interior angles on transverse line are equal
So, ∠1=∠4
And ∠4=
Hence, ∠1=∠4=
And On FG the sum of angles will be 
∠3+∠2+∠1=
+∠2+
=
Hence, ∠2=
Now, we know that the sum of interior angles is equal to the exterior angle:
Therefore, ∠2+∠5=∠6+∠7

On simplification we get:


Hence, the value of x is
.
A. You may set the variables in either order. But for argument sake, let's set as follows:
x = Amount of bookshelves
y = Amount of tables
B. Because of the amount of things you need to make, the following is an inequality using those variables.
x + y > 25
Plus you can determine a second inequality based on the amount of money that you have to spend.
20x + 45y < 675
Finally you may also add in that each value must be greater than or equal to zero, since they cannot have negative tables.
C. By solving the system and looking at basic constraints when graphed, you can see the feasible region has 4 vertices.
(0,0)
(18, 7)
(0, 15)
(33.75, 0) or (33, 0) if you insist on rounding.
Answer:
140-(14×7)=42
Step-by-step explanation:
if he sells 14 each day for 7 days. thats 14-7=98 and to find how many he has left, you have to subtract 98 from 140
The equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
<h3>How to determine the functions?</h3>
A quadratic function is represented as:
y = a(x - h)^2 + k
<u>Question #6</u>
The vertex of the graph is
(h, k) = (-1, 2)
So, we have:
y = a(x + 1)^2 + 2
The graph pass through the f(0) = -2
So, we have:
-2 = a(0 + 1)^2 + 2
Evaluate the like terms
a = -4
Substitute a = -4 in y = a(x + 1)^2 + 2
y = -4(x + 1)^2 + 2
<u>Question #7</u>
The vertex of the graph is
(h, k) = (2, 1)
So, we have:
y = a(x - 2)^2 + 1
The graph pass through (1, 3)
So, we have:
3 = a(1 - 2)^2 + 1
Evaluate the like terms
a = 2
Substitute a = 2 in y = a(x - 2)^2 + 1
y = 2(x - 2)^2 + 1
<u>Question #8</u>
The vertex of the graph is
(h, k) = (1, -2)
So, we have:
y = a(x - 1)^2 - 2
The graph pass through (0, -3)
So, we have:
-3 = a(0 - 1)^2 - 2
Evaluate the like terms
a = -1
Substitute a = -1 in y = a(x - 1)^2 - 2
y = -(x - 1)^2 - 2
Hence, the equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
Read more about parabola at:
brainly.com/question/1480401
#SPJ1