Given:
'a' and 'b' are the intercepts made by a straight-line with the co-
ordinate axes.
3a = b and the line pass through the point (1, 3).
To find:
The equation of the line.
Solution:
The intercept form of a line is
...(i)
where, a is x-intercept and b is y-intercept.
We have, 3a=b.
...(ii)
The line pass through the point (1, 3). So, putting x=1 and y=3, we get



Multiply both sides by a.

The value of a is 2. So, x-intercept is 2.
Putting a=2 in
, we get


The value of b is 6. So, y-intercept is 6.
Putting a=2 and b=6 in (i), we get

Therefore, the equation of the required line in intercept form is
.
Answer:
QS = 8x - 2
Step-by-step explanation:
QS = QR + RS
QS = 6x - 11 + 2x + 9
QS = 8x - 2
Answer:
(1.6, 7.02)
Step-by-step explanation:
5 more brainliest for expert : )
Answer:
32x^2+4x
3x-7, g(x)=2x^(2)-3x+1, h(x)=4x+1, k(x)
Answer:
False, it isn't right.
Step-by-step explanation: