Answer:
Year 1
2650.00
Year 2
2385.00
Year 3
2146.50
Year 4
1931.85
Year 5
1738.67
Year 6
1564.80
Year 7
1408.32
Year 8
1267.49
Year 9
1140.74
Year 10
1026.66
Year 11
924.00
Year 12
831.60
Step-by-step explanation:
Answer:
0.6048
Step-by-step explanation:
Given the following :
Assume a normal distribution :
Mean (m) = 105
Standard deviation (sd) = 20
Find the probability that a randomly selected adult has an IQ between 88 and 122 .
Z = (x - m) / sd
For IQ score of 88:
Z = (88 - 105) / 20
Z = (-17) / 20
Z = - 0.85
For IQ score of 122:
Z = (122 - 105) / 20
Z = (17) / 20
Z = 0.85
P(-0.85<Z<0.85) = P(Z < 0.85) - P(Z < - 0.85)
P(-0.85<Z<0.85) = (0.8023 - 0.1977)
P(-0.85<Z<0.85) = 0.6048
Answer:
729/8
Step-by-step explanation:
4 1/2 * 4 1/2 * 4 1/2 = (9/2)^3 = 729/8