Answer:
Step-by-step explanation:
Let's call hens h and ducks d. The first algebraic equation says that 6 hens (6h) plus (+) 1 duck (1d) cost (=) 40.
The second algebraic equations says that 4 hens (4h) plus (+) 3 ducks (3d) cost (=) 36.
The system is
6h + 1d = 40
4h + 3d = 36
The best way to go about this is to solve it by substitution since we have a 1d in the first equation. We will solve that equation for d since that makes the most sense algebraically. Doing that,
1d = 40 - 6h.
Now that we know what d equals, we can sub it into the second equation where we see a d. In order,
4h + 3d = 36 becomes
4h + 3(40 - 6h) = 36 and then simplify. By substituting into the second equation we eliminated one of the variables. You can only have 1 unknown in a single equation, and now we do!
4h + 120 - 18h = 36 and
-14h = -84 so
h = 6.
That means that each hen costs $6. Since the cost of a duck is found in the bold print equation above, we will sub in a 6 for h to solve for d:
1d = 40 - 6(6) and
d = 40 - 36 so
d = 4.
That means that each duck costs $4.
Answer:
<h2>x = -17</h2>
Step-by-step explanation:

Answer:
y=-2x+b
Step-by-step explanation:
Just use the formula y=ax+b, and input -2 as A, and 3, as x, and 2, as y, and then simplify.
Ok, first put in the -2 for each b. That gives:
|-4(-2)-8|+|-1(-(-2))^2|+2(-2)^3
Let's do each section.
The first section is |-4(-2)-8)|
-4 times -2 is 8, minus 8 is 0. The absolute value of 0 is still 0.
Now we move on to |-1(-(-2))^2)|
First we do exponents
-(-2) is 2, and 2^2 is 4. 4 times -1 is -4. The absolute value of -4 is 4
Now the last section, 2(-2)^3
Exponents first: (-2)^3 is -2 * -2 * -2, which is -8.
-8*2=-16.
0+4+(-16)=-12