What is the inverse function of y = (x-4)^2+2
1 answer:
One way to find the inverse of a function is by first swapping x and y, then solving for y, like this:

Now, let's solve for y, like this:
![\begin{gathered} x=(y-4)^2+2 \\ x-2=(y-4)^2+2-2 \\ (y-4)^2=x-2 \\ \sqrt[]{\mleft(y-4\mright)^2}=\sqrt[]{x-2} \\ y-4=\sqrt[]{x-2} \\ y-4+4=\sqrt[]{x-2}+4 \\ y=\sqrt[]{x-2}+4 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%28y-4%29%5E2%2B2%20%5C%5C%20x-2%3D%28y-4%29%5E2%2B2-2%20%5C%5C%20%28y-4%29%5E2%3Dx-2%20%5C%5C%20%5Csqrt%5B%5D%7B%5Cmleft%28y-4%5Cmright%29%5E2%7D%3D%5Csqrt%5B%5D%7Bx-2%7D%20%5C%5C%20y-4%3D%5Csqrt%5B%5D%7Bx-2%7D%20%5C%5C%20y-4%2B4%3D%5Csqrt%5B%5D%7Bx-2%7D%2B4%20%5C%5C%20y%3D%5Csqrt%5B%5D%7Bx-2%7D%2B4%20%5Cend%7Bgathered%7D)
Then, the inverse function of y = (x-4)^2+2 is:
You might be interested in
Answer:
x=0 or x=4
Step-by-step explanation:
5x(x−4)=0
Equation :
[x(x+4)]/2=6 (as (b*h)/2=A)
x*x + 4*x -12 = 0
so, x = 2 units(as -6 is negative)
Solution
Problem 6
For this case we can do this:
12, 16,__, 14, 8, 7
We can solve for x like this:


Problem 7
F
Answer: A
Step-by-step explanation: Complementary angles must add up to 90 degrees.