Step-by-step explanation:
If you have a co-ordinate plane with you, it will greatly help.
First, move -9.5 units to the left.
Then, move 8 units up.
You will most likely land on a line. If you don't, try it again.
If you do, put your point right there!
Answer:
In 4 Hours
Step-by-step explanation:
1 hour: A: 30.25 B: 34.25
2 hours: A: 35.5 B: 38.5
3 Hours: A: 40.75 B: 42.75
4 Hours: A: 46 B: 46
First of all, the modular inverse of n modulo k can only exist if GCD(n, k) = 1.
We have
130 = 2 • 5 • 13
231 = 3 • 7 • 11
so n must be free of 2, 3, 5, 7, 11, and 13, which are the first six primes. It follows that n = 17 must the least integer that satisfies the conditions.
To verify the claim, we try to solve the system of congruences

Use the Euclidean algorithm to express 1 as a linear combination of 130 and 17:
130 = 7 • 17 + 11
17 = 1 • 11 + 6
11 = 1 • 6 + 5
6 = 1 • 5 + 1
⇒ 1 = 23 • 17 - 3 • 130
Then
23 • 17 - 3 • 130 ≡ 23 • 17 ≡ 1 (mod 130)
so that x = 23.
Repeat for 231 and 17:
231 = 13 • 17 + 10
17 = 1 • 10 + 7
10 = 1 • 7 + 3
7 = 2 • 3 + 1
⇒ 1 = 68 • 17 - 5 • 231
Then
68 • 17 - 5 • 231 ≡ = 68 • 17 ≡ 1 (mod 231)
so that y = 68.
Answer:
24
i think:)
Step-by-step explanation: