1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amanda [17]
2 years ago
9

A person has a body fat percent of 15.2% and weighs 185 pounds. How many poundsof his weight is made up of fat? Round your answe

r to the nearest tenth of a percent
Mathematics
1 answer:
puteri [66]2 years ago
3 0

We can find the 15.2% of 185 pounds by dividing the weight by 15.2% in its decimal form:

185(15.2\%)=185(0.152)=27.7\text{pounds}

therefore, there are 27.7 pounds of fat

You might be interested in
Need help with b, picture attached.
Vikki [24]
7500/75=100
This means that a field of those dimensions would not be the required length of a minimum of 110 feet. 
7 0
3 years ago
SIMPLY FIND THE DERIVATIVE. I'M LAZY.
SIZIF [17.4K]

Answer:

3, 2, 8, 3, -12

Step-by-step explanation:

d(2x⁴ - 6x²)³/dx

= 3(2x⁴ - 6x²)²(8x³ - 12x)

6 0
3 years ago
Read 2 more answers
What would be the profit when the price is $35?
Roman55 [17]

Step-by-step explanation:

The total expenses stay the same at $92,039.

The income changes to 12,000 × $35 = $420,000.

So the profit is $420,000 − $92,039 = $327,961.

3 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Suppose a can of paint has a diameter of 14 cm and a height of 16 cm. What is the volume of paint in the can? (to nearest whole
alukav5142 [94]
Divide 14 by 2 to get the radius and plug into formula.
pi 7^2 16
pi 49 16= pi784=2462.7
2463 cm3 is the answer 
5 0
3 years ago
Other questions:
  • Kayla and her best friend Christina go shopping. The function p(t) = 2x4 + 6x3 - 3x2 + 24 represents how much money each girl sp
    7·2 answers
  • What it the area of triangle PQR on the grid. Please answer quick and detailed and if your right I will mark you brainliest. pic
    8·1 answer
  • Need help on this question
    5·1 answer
  • On a map two cities are 6 3/4 inches apart. The scale of the map is 1/4 inch= 10 miles. What is the actual distance between the
    7·1 answer
  • 4 x (6-2)^2÷(3-1)^3<br><br>PLEASE HELP ME
    12·2 answers
  • Please Help Me Thanks!​
    5·1 answer
  • B) Given figure is a parallelogram ABCD of area 96-12 sq. cm.
    8·1 answer
  • 1. Are the following lines parallel, perpendicular, or neither?
    15·1 answer
  • Joel races bikes. In his city, there are 4 4 lengths of race tracks. The chart shows the race tracks and each track's length in
    5·1 answer
  • Kevin Horn is the national sales manager for National Textbooks Inc. He has a sales staff of 40 who visit college professors all
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!