<h3>
Therefore they are perpendicular.</h3>
Step-by-step explanation:
A equation of line is
y =mx +c
Here the slope of the line is m.
Given equations are
x - 2y = 18
⇔-2y = -x +18
............(1)
and 2x + y = 6
⇔y = -2x +6 ............(2)
Therefore the slope of equation (1) is
= 
Therefore the slope of equation (2) is
= -2
If two lines are perpendicular, when we multiply their slope we get -1.
therefore,
=
. (-2) = -1
Therefore they are perpendicular.
Answer:
y=-6+5
Step-by-step explanation:
Step 1: 6x - 2x - 5 = -6 + 21
Step 2: 6x - 2x - 5 = 15
Step 3: 4x - 5 = 15
The next step would be to add 5 to both sides of the equation.
so Step 3: 4x - 5 = 15 .......add 5 to both sides would make
Step 4: 4x = 20
So after the next step you would have 4x = 20
Hope this helps! :)
As a rule of thumb, the sampling distribution of the sample proportion can be approximated by a normal probability distribution whenever the sample size is large.
<h3>What is the Central limit theorem?</h3>
- The Central limit theorem says that the normal probability distribution is used to approximate the sampling distribution of the sample proportions and sample means whenever the sample size is large.
- Approximation of the distribution occurs when the sample size is greater than or equal to 30 and n(1 - p) ≥ 5.
Thus, as a rule of thumb, the sampling distribution of the sample proportions can be approximated by a normal probability distribution when the sample size is large and each element is selected independently from the same population.
Learn more about the central limit theorem here:
brainly.com/question/13652429
#SPJ4
Answer:
Multiply the numbers until you get the same denominator (Bottom number) for both fractions. I will do #1 to show you.
1/3 1/2
Both 3 and 2 go into 6, so I will use that.
When multiplying the bottom , you have to do the same to the top, so...
2/6 OR 3/6
3/6 is greater, so that is the answer.
Therefore, 1/2 is more
Another way you can do this is to draw a pizza, a section off parts of it according to the fractions.
Hope this helped.