I'd also say that the morphology presented in this picture is filamentous.
The reason for my believing this is that filamentous morphology concerns long visible chains, threads, or filaments, which you can see in the image.
Answer:
10.07 Miles/Hour
Explanation:
All you have to do is divide the miles by the amount of hours and add miles an hour as your label!
The right answer is A patient who is Rh– can receive only Rh– blood.
The blood group is not the only thing that matters, it adds a category: rhesus. Rhesus refers to a red blood cell antigen that is on their wall. There are two blood group systems: Rh positive (Rh +) and Rh negative (Rh-).
Rhesus is positive in people who have this antigen. It concerns the majority of the population. Negative rhesus refers to people without the antigen. This rhesus factor is especially useful to know if a blood transfusion is feasible between two people.
The blood transfusions can be "iso-rhesus", that is to say between Rh + and Rh- but only in one sense: Rh- can give to Rh + but Rh + can not give to Rh-. Again because of the presence of antibodies directed against the antigen in Rh- people.
Answer:
1. As temperature and pressure increases, density increases
Explanation:
The earth is composed of three main layers: Crust, Mantle and Core. The density or mass per unit volume of the earth's layers increases as one moves from the surface towards the interior of the earth known as the core. Also, there is an increase in pressure and temperature as depth increases. There are three main sources of heat in the earth's core: (1) conserved heat from when the planet formed and coalesced, (2) heat due to friction caused by denser core material sinking to the center of the planet, and (3) heat from the decay of radioactive elements.
The earth's core is composed almost entirely of the metals, iron and nickel. The core has an inner solid layer and a molten outer core. Iron and nickel are both very dense metals, so the core of the earth is very dense and the density increases with depth with the inner core being the most dense layer of the earth.
(of an immature or stem cell) capable of giving rise to several different cell types.