1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
1 year ago
11

n%28x%29%20-%20%20%5Ctan%20%7B%7D%5E%7B2%7D%20%28x%29%20%20%7D%20%20%20%5C%3A%20dx%20%5C%5C%20" id="TexFormula1" title=" \rm \int_{ 0}^ {\large\frac{\pi}4} \sqrt{ \tan(x) - \tan {}^{2} (x) } \: dx \\ " alt=" \rm \int_{ 0}^ {\large\frac{\pi}4} \sqrt{ \tan(x) - \tan {}^{2} (x) } \: dx \\ " align="absmiddle" class="latex-formula">
Mathematics
1 answer:
Masteriza [31]1 year ago
7 0

First substitute x=\tan^{-1}(y) to rewrite the integral as

\displaystyle \int_0^{\pi/4} \sqrt{\tan(x) - \tan^2(x)} \, dx = \int_0^1 \frac{\sqrt{y-y^2}}{1+y^2} \, dy

Now use an Euler substitution, z=\frac{\sqrt{y-y^2}}y to rewrite it again as

\displaystyle \int_0^{\pi/4} \sqrt{\tan(x) - \tan^2(x)} \, dx = 2 \int_0^\infty \frac{t^2}{(t^2+1)^2 + 1) (t^2 + 1)} \, dt

where we take

\sqrt{y - y^2} = \sqrt{-y(y-1)} = yt \implies y = \dfrac1{1+t^2} \text{ and } dy = -\dfrac{2t}{(1+t^2)^2} \, dt

Partial fractions:

\displaystyle \frac{t^2}{((t^2+1)^2+1) (t^2 + 1)} = \dfrac{t^2+2}{t^4+2t^2+2} - \dfrac1{t^2+1}

so that

\displaystyle \int_0^{\pi/4} \sqrt{\tan(x) - \tan^2(x)} \, dx = 2 \left(\int_0^\infty \frac{t^2+2}{t^4+2t^2+2} \, dt - \int_0^\infty \frac{dt}{t^2+1}\right)

The second integral is trivial,

\displaystyle \int_0^\infty \frac{dt}{t^2+1} = \lim_{t\to\infty}\tan^{-1}(t) - \tan^{-1}(0) = \frac\pi2

For the other, I'm compelled to use the residue theorem, though real methods are doable too (e.g. trig substitution). Consider the contour integral

\displaystyle \int_\Gamma f(z) \, dz = \int_\Gamma \frac{z^2+2}{z^4+2z^2+2} \, dz

where \Gamma is a semicircle in the upper half of the complex plane, and its diameter lies on the real axis connecting -R to R. The value of this integral is 2πi times the sum of the residues in the upper half-plane. It's fairly straightforward to convince ourselves that the integral along the circular arc vanishes as R\to\infty, so the contour integral converges to the integral over the entire real line. Note that

\displaystyle 2 \int_0^\infty \frac{t^2+2}{t^4+2t^2+2} \, dt = \int_{-\infty}^\infty \frac{t^2+2}{t^4+2t^2+2} \, dt

since the integrand is even.

Find the poles of f(z).

z^4 + 2z^2 + 2 = 0 \\\\ ~~~~ \implies (z^2+1)^2 = -1 \\\\ ~~~~ \implies z^2 = -1 \pm i \\\\ ~~~~ \implies z = \pm \sqrt{-1 \pm i} = \sqrt[4]{2}\, e^{\pm i(3\pi/8 + \pi k)}

where k\in\{0,1\}.

The two poles we care about are at z_1=\sqrt[4]{2}\,e^{i\,3\pi/8} and z_2=\sqrt[4]{2}\,e^{-i\,11\pi/8}. Compute the residues at each one.

\displaystyle \mathrm{Res}\left\{f(z),z=z_1\right\} = \lim_{z\to z_1} \frac{f(z)}{z-z_1} = -\frac1{2^{7/4}}\,ie^{-i\,\pi/8} \\\\ ~~~~~~~~~~~~~~~~~~~~~~~~= -\frac1{2^{7/4}} \left(\sin\left(\frac\pi8\right) + i \cos\left(\frac\pi8\right)\right)

\displaystyle \mathrm{Res}\left\{f(z),z=z_2\right\} = \lim_{z\to z_2} \frac{f(z)}{z-z_2} = -\frac1{2^{7/4}}\,ie^{i\,\pi/8} \\\\ ~~~~~~~~~~~~~~~~~~~~~~~~= \frac1{2^{7/4}} \left(\sin\left(\frac\pi8\right) - i \cos\left(\frac\pi8\right)\right)

By the residue theorem,

\displaystyle \int f(z) \, dz = 2\pi i \sum_{\rm poles} \mathrm{Res}\{f(z)\} = \frac{4\pi}{2^{7/4}} \cos\left(\frac\pi8\right)

We also have

\displaystyle \cos^2\left(\dfrac\pi8\right) = \dfrac{1 + \cos\left(\frac\pi4\right)}2 = \dfrac{2 + \sqrt2}4 \implies \cos\left(\frac\pi8\right) = \dfrac{\sqrt{2+\sqrt2}}2

Then the remaining integral is

\displaystyle \int_0^\infty \frac{t^2+2}{t^4+2t^2+2} \, dt = \frac{4\pi}{2^{7/4}} \cos\left(\frac\pi8\right) = \sqrt{\frac12 + \frac1{\sqrt2}} \, \pi

It follows that

\displaystyle \int_0^{\pi/4} \sqrt{\tan(x) - \tan^2(x)} \, dx = \boxed{\left(\sqrt{\frac12 + \frac1{\sqrt2}} - 1\right) \pi}

You might be interested in
I just need #31 and #33 answered please.
sergiy2304 [10]

<h2><em><u>3</u></em><em><u>1</u></em><em><u>.</u></em><em><u>f</u></em><em><u>(</u></em><em><u>x</u></em><em><u>)</u></em><em><u> </u></em><em><u>=</u></em><em><u>{</u></em><em><u>3</u></em><em><u>—</u></em><em><u>x</u></em><em><u>,</u></em><em><u> </u></em><em><u> </u></em><em><u>x≤1</u></em></h2><h2><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em><u>{</u></em><em><u>2</u></em><em><u>x</u></em><em><u>,</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>1</u></em><em><u><</u></em><em><u> </u></em><em><u>x</u></em><em><u> </u></em></h2><h2><em><u>=</u></em><em><u> </u></em><em><u> </u></em><em><u>3</u></em><em><u>+</u></em><em><u>1</u></em><em><u>+</u></em><em><u>2</u></em><em><u>+</u></em><em><u>1</u></em><em><u>=</u></em><em><u>7</u></em></h2><h2><em><u>=</u></em><em><u> </u></em><em><u> </u></em><em><u>x</u></em><em><u>+</u></em><em><u>x</u></em><em><u>+</u></em><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u>3</u></em><em><u>x</u></em><em><u> </u></em></h2><h2><em><u>=</u></em><em><u> </u></em><em><u> </u></em><em><u>3</u></em><em><u>x</u></em><em><u>+</u></em><em><u>7</u></em><em><u>=</u></em><em><u>1</u></em><em><u>0</u></em><em><u>x</u></em></h2><h2><em><u>=</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>×</u></em><em><u>=</u></em><em><u>3</u></em><em><u>0</u></em><em><u> </u></em></h2><h2><em><u>=</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>—</u></em><em><u>—</u></em><em><u>—</u></em></h2><h2><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em><u>1</u></em><em><u>0</u></em></h2><h2><em><u>=</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>3</u></em></h2><h2><em><u>n</u></em><em><u>o</u></em><em><u>w</u></em><em><u> </u></em><em><u>,</u></em></h2><h2><em><u>3</u></em><em><u>—</u></em><em><u>x</u></em><em><u>=</u></em><em><u>3</u></em></h2><h2><em><u>x≤1</u></em><em><u>=</u></em><em><u>3</u></em><em><u>×</u></em><em><u>1</u></em><em><u>=</u></em><em><u>3</u></em></h2><h2><em><u>2</u></em><em><u>x</u></em><em><u>=</u></em><em><u>1</u></em><em><u>×</u></em><em><u>3</u></em><em><u>×</u></em><em><u>1</u></em><em><u>×</u></em><em><u>3</u></em><em><u>=</u></em><em><u>9</u></em></h2><h2><em><u>1</u></em><em><u><</u></em><em><u>x</u></em><em><u>=</u></em><em><u>9</u></em><em><u>×</u></em><em><u>3</u></em><em><u>=</u></em><em><u>2</u></em><em><u>7</u></em><em><u>,</u></em><em><u>,</u></em><em><u>,</u></em><em><u>,</u></em><em><u>,</u></em><em><u>,</u></em><em><u>,</u></em><em><u>,</u></em><em><u> </u></em></h2><h2><em><u>how</u></em><em><u> </u></em><em><u>I</u></em><em><u> </u></em><em><u>have</u></em><em><u> </u></em><em><u>done</u></em><em><u> </u></em><em><u>do</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>all</u></em><em><u> </u></em><em><u>number</u></em><em><u> </u></em></h2><h2><em><u>note</u></em><em><u>:</u></em><em><u>please</u></em><em><u> </u></em><em><u>understand</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>write</u></em><em><u> </u></em></h2><h2 />
5 0
4 years ago
Susan borrowed $2,000 at a simple interest rate of 3%. She paid the money back over 1.5 years. What was the total amount of mone
dimulka [17.4K]
I got 6000 but im not 100% sure
4 0
3 years ago
Please help me ASAP !!!! Will give brainliest!!!!!!<br><br>Please Answer the image below.
JulijaS [17]

Answer:

I think it’s the first and fourth

Step-by-step explanation:

Hope this helps!!!!

3 0
4 years ago
28x+11 what is the answer
love history [14]

Answer:

39x

Step-by-step explanation:

28x + 11= 39x

I hope this helps

Have a great day!

5 0
3 years ago
Sebastian said that if a number is a perfect square. then the number is even. Provide two examples that show that the statement
BaLLatris [955]
<h3><u>Answer:</u></h3>

Below!

<h3><u>Step-by-step explanation:</u></h3>

<u>You can take 25 as one example and 49 as the second example.</u>

Let's factorize.

  • => 25 = 5 x 5 = 5² (Which is odd)
  • => 49 = 7 x 7 = 7² (Which is odd)
<h3><u>Conclusion:</u></h3>

Hence, the statement is not true.

Hoped this helped.

3 0
2 years ago
Other questions:
  • How to Find the rang of values for x if the side lengths of a triangle is 3, 13, x
    12·1 answer
  • The area of a rectangular rug is 25.5 square meters. The width of the rug is 3.75 meters. Found the length of the rug by dividin
    14·2 answers
  • Which best describes the triangle or the triangles, if any, that can be formed with two sides that measure 5 inches and an angle
    7·2 answers
  • What is the quotient of 33.32 divide by 9.8
    8·2 answers
  • Claire is a manager at a toy packaging company. The company packs 80 boxes of toys every hour for the first 3 hours of the day.
    6·2 answers
  • When using ANOVA, the sum of squares within is: Group of answer choices Showing the difference between the groups Effect varianc
    13·1 answer
  • How to factor trinomials of the form ax to the power of two +bc+c
    12·1 answer
  • If sin(x)=cos(Y) what are the possibe values of x and y?
    10·1 answer
  • Find m∠LOM for brainliest
    6·1 answer
  • A child is hopping along a sidewalk. The ratio table below shows the comparison between the number of hops and the distance trav
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!