The first step is to determine the zeros of p(x).
From the Remainder Theorem, 
p(a) = 0  => (x-a) is a factor of p(x), and x=a is a zero of p(x).
Try x=3:
p(3) = 3^3 - 3*3^2 - 16*3 + 48 = 27 - 27 - 48 + 48 = 0
Therefore x=3 is a zero, and (x-3) is a factor of p(x).
Perform long division.
                    x²             -  16
      -------------------------------------
x-3 |  x³  -  3x²  -  16x  +  48
         x³  -  3x²
        -----------------------------------
                         -  16x  + 48
                         -  16x  +  48         
Note that x² - 6 = (x+4)(x-4).
Therefore the complete factorization of p(x) is
p(x) = (x-3)(x+4)(x-4)
To determine when p(x) is negative, we shall test between the zeros of p(x)
   x      p(x)       Sign
----  ---------    ---------
  -4          0    
   0        48         +
   3           0
3.5   -1.875         -
   4           0
p(x) is negative in the interval x = (3, 4).
Answer
The time interval is Jan. 1, 2014 to Jan. 1, 2015.
        
             
        
        
        
Answer:
C. b-4
Step-by-step explanation:
The number -4 shouldn't change since she read 4 fewer books
 
        
                    
             
        
        
        
Answer:
(2x-3) (2x+3)
zeros, x intercepts:  -3/2, 3/2
Step-by-step explanation:
4x^2 -9
We know the difference of squares is a^2 -b^2
This factors into (a-b) (a+b)
Let 4x^2 =a^2  
Taking the square root 
2x =a
Let b^2 =9
Taking the square root 
b= 3
(4x^2-9 ) = (2x-3) (2x+3)
To find the zeros, we set the equation equal to zero
(4x^2-9 ) = (2x-3) (2x+3) =0
Using the zero product property
2x-3 =0   and 2x+3 =0
2x-3+3 = 0+3                    2x+3-3 = 0-3
2x=3                                  2x=-3
Divide by 2
2x/2 = 3/2                               2x/2 = -3/2
x = 3/2                                       x = -3/2
These are the zeros of the equation (which are also the x intercepts)
 
        
             
        
        
        
2/5 , 1/2 , 7/10 , 10/7 , 3/1
Step-by-step explanation:
hope this helped