Answer:
Use the normal distribution if the population standard deviation is known.
Use the student's t distribution when the population standard deviation is unknown.
Explanation:
A mound-shaped distribution refers to the normal distribution.
A good sample size for testing against the normal distribution should be
n >= 30.
The condition for the sample size is satisfied.
However, we are not given the population standard deviation, therefore it is assumed to be unknown.
Therefore the student's t distribution should be used.
No no no no no no no no no jk its c your welcome
-48 plugging in everything and using PEMDAS it should be -48
Answer
Ivanna started jogging at 7:20
Answer:
(5,19) lies on the graph of the transformed function y = f(1/5x)
Step-by-step explanation:
Suppose (1,19) is on the graph of y = f (x)
the graph of the transformed function y = f(1/5x)

1/5 is multiplied with x in f(x)
1/5 is less than 1 so there will be a horizontal stretch in the graph by the factor of 1/5
To make horizontal stretch we change the point
f(x)=f(bx) then (x,y) --->( x/b,y)
We divide the x coordinate by the fraction 1/5
(1,19) ----> 
So (5,19) lies on the graph of the transformed function y = f(1/5x)