N-2,n and n+2;n-3,n and n+3,n-4,n and n+4....
Answer:
The correct option is;
False
Step-by-step explanation:
The coefficient of x^k·y^(n-k) is nk, False
The kth coefficient of the binomial expansion, (x + y)ⁿ is 
Where;
k = r - 1
r = The term in the series
For an example the expansion of (x + y)⁵, we have;
(x + y)⁵ = x⁵ + 5·x⁴·y + 10·x³·y² + 10·x²·y³ + 5·x·y⁴ + y⁵
The third term, (k = 3) coefficient is 10 while n×k = 3×5 = 15
Therefore, the coefficient of x^k·y^(n-k) for the expansion (x + y)ⁿ =
not nk
C can be found using pythagoras theorem. c2=a2+b2. Now, b is not given, but we know that cos(theta)=b/c=>b=c*cos(theta). Substituting b in the above relation, c2=a2+c2(cos(theta))^2=>c2=a2/(1-cos((theta))^2). c is the squareroot of c2. Hence c=sqrt(2/(1-cos((theta))^2))
50+ (100x99)
50 + 9900
9950
(You have to multiply first because of pemdas
Parentheses
Exponents
Multiply
Divide
Add
Subtract )