1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa [96]
3 years ago
9

State the property of addition that justifies each numbered step in the following simplification.

Mathematics
1 answer:
Ierofanga [76]3 years ago
4 0
Well you would use PEMDAS solve what's in the parenthesis first and the add that to 56 and you should get your answer.
You might be interested in
Parabola,Can someone please help me please ?
ivanzaharov [21]

Answer:

a. opens: downward

b. vertex: (4, 2)

c. x-intercepts: (2, 0), (6, 0); y-intercept: (0, -6)

d. a.o.s.: x = 4

Step-by-step explanation:

<h3><u>A:</u></h3>

Based on the picture the parabola opens downwards. Right away you know that the "a" value in the parabola's equation will be negative.

<h3><u>B:</u></h3>

To find the coordinates of the vertex, you'll need to look at the picture. Remember: look on the x-axis first and then the y-axis next.

The very top of the parabola (maximum point = vertex) is at the x-value of 4 and the y-value of 2. This means the coordinates of the vertex of this parabola is (4, 2).

<h3><u>C:</u></h3>

To find the x-intercepts, look at the x-axis and see where the parabola crosses it. The parabola goes through the x-axis at the x-values of 2 and 6, so the x-intercepts of this parabola are (2, 0) and (6, 0).

To find the y-intercept, look at the y-axis and see where the parabola crosses it. The parabola intersects the y-axis at the y-value of -6, so (0, -6) would be the y-intercept.

<h3><u>D:</u></h3>

The equation for the axis of symmetry of a graph is always x = h, where h is the x-value of the coordinate of the vertex.

Since the vertex is (4, 2), where 4 = h, the equation of the axis of symmetry would be x = 4.

4 0
4 years ago
F(x) = Square root of x plus eight.; g(x) = 8x - 12 Find f(g(x))
Liono4ka [1.6K]
f(x)= \sqrt{x+8} \Rightarrow f(g(x))= \sqrt{(8x-12)+8} = \sqrt{8x -4}
7 0
3 years ago
Read 2 more answers
Y=sqrt(x)(8x-5) find the derivative
garri49 [273]

Answer:

\displaystyle y' = \frac{24x - 5}{2\sqrt{x}}

General Formulas and Concepts:  <u> </u>

<u>Algebra I</u>  

  • Exponentials [Fractions] - Are radicals
  • Exponential Rule [Rewrite]: \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>  

Derivatives  

Derivative Notation  

Derivative of a constant is 0  

Basic Power Rule:  

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \sqrt{x}(8x - 5)

<u>Step 2: Differentiate</u>

\displaystyle f(x) = \sqrt{x}, \ g(x) = (8x - 5)

  1. Product Rule:                                                                                                  \displaystyle y' = \frac{d}{dx}[\sqrt{x}] \cdot (8x - 5) + \sqrt{x} \cdot \frac{d}{dx}[(8x - 5)]
  2. Rewrite:                                                                                                           \displaystyle y' = \frac{d}{dx}[x^{\frac{1}{2}}] \cdot (8x - 5) + \sqrt{x} \cdot \frac{d}{dx}[(8x - 5)]
  3. Basic Power Rule:                                                                                          \displaystyle y' = \frac{1}{2}x^{\frac{1}{2} - 1} \cdot (8x - 5) + \sqrt{x} \cdot 1 \cdot 8x^{1 - 1}
  4. Simplify:                                                                                                          \displaystyle y' = \frac{1}{2}x^{-\frac{1}{2}} \cdot (8x - 5) + \sqrt{x} \cdot 1 \cdot 8x^{0}
  5. Rewrite:                                                                                                           \displaystyle y' = \frac{1}{2x^{\frac{1}{2}}} \cdot (8x - 5) + \sqrt{x} \cdot 1 \cdot 8
  6. Multiply:                                                                                                           \displaystyle y' = \frac{8x + 5}{2x^{\frac{1}{2}}} + 8\sqrt{x}
  7. Rewrite:                                                                                                           \displaystyle y' = \frac{8x + 5}{2\sqrt{x}} + 8\sqrt{x}
  8. Add/Rewrite:                                                                                                   \displaystyle y' = \frac{24x - 5}{2\sqrt{x}}
3 0
3 years ago
Please answer <br>Find the product.<br>(7m^2-3m-7)(m^2-7m-6)​
densk [106]

Step-by-step explanation:

(7m²-3m-7)(m²-7m-6) =

7m⁴-49m³-42m²-3m³+21m²+18m

-7m²+49m+42

= 7m⁴-52m³-28m²+67m+42

6 0
3 years ago
F(x)=-x+2f(x)=−x+2, find f(6)f(6).
Vesna [10]

Answer:

f(6) = - 4

Step-by-step explanation:

Substitute x = 6 into f(x) , that is

f(6) = - 6 + 2 = - 4

7 0
3 years ago
Other questions:
  • Simply square root of -112
    7·1 answer
  • *** new *** aljbra is djaoaja<br> ** friends ? *** 7~3 -99
    12·1 answer
  • CAN YOU GUYS PLEASE ANSWER THE QUESTION RIGHT FOR ONCE
    12·2 answers
  • Please answer by put the letter than answer, thank you
    15·1 answer
  • A line passes through the point (6,3) and has a slope of 3/2 write an equation in slope intercept form for this line
    12·1 answer
  • Which ordered pairs are solutions to the system of inequalities?
    10·1 answer
  • 2x+3=8 to the fifth power
    8·1 answer
  • Could someone please help me with part b ?
    10·1 answer
  • The random variable X has mean 12 and standard deviation 3. The random variable W is defined as W=7+2X . What are the mean and s
    13·2 answers
  • Please help me?!!! make my life easier please​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!