So,
There are 4 red marbles.
There are 7 blue marbles.
There are 5 green marbles.
There are 16 marbles in total.
a.
Answer = (probability of selecting a red marble)(probability of selecting a blue marble)
First, the probability of selecting a red marble.
![\frac{4}{16} \ or\ \frac{1}{4}](https://tex.z-dn.net/?f=%20%5Cfrac%7B4%7D%7B16%7D%20%5C%20or%5C%20%20%5Cfrac%7B1%7D%7B4%7D%20)
Next, the probability of selecting a blue marble.
![\frac{7}{16}](https://tex.z-dn.net/?f=%20%5Cfrac%7B7%7D%7B16%7D%20)
Multiply the probabilities together.
![\frac{1}{4} * \frac{7}{16} = \frac{7}{64}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B4%7D%20%2A%20%20%5Cfrac%7B7%7D%7B16%7D%20%3D%20%20%5Cfrac%7B7%7D%7B64%7D%20)
That is the probability for event a.
b.
Answer = (probability of selecting a red marble)(probability of selecting a blue marble)
First, the probability of selecting a red marble.
![\frac{4}{16} \ or\ \frac{1}{4}](https://tex.z-dn.net/?f=%20%5Cfrac%7B4%7D%7B16%7D%20%5C%20or%5C%20%5Cfrac%7B1%7D%7B4%7D%20)
Next, the probability of selecting a blue marble WITH A RED MARBLE REMOVED.
![\frac{7}{15}](https://tex.z-dn.net/?f=%20%5Cfrac%7B7%7D%7B15%7D%20)
Multiply the probabilities together.
![\frac{1}{4} * \frac{7}{15} = \frac{7}{60}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B4%7D%20%2A%20%20%5Cfrac%7B7%7D%7B15%7D%20%3D%20%20%5Cfrac%7B7%7D%7B60%7D%20)
That is the probability for event b.
c.
Obviously:
![\frac{7}{64} \neq \frac{7}{60}](https://tex.z-dn.net/?f=%20%5Cfrac%7B7%7D%7B64%7D%20%20%5Cneq%20%20%5Cfrac%7B7%7D%7B60%7D%20)
So the answer is no.