Answer:
(3x+2)(2x+3)
Step-by-step explanation:
6x2+13x+6
6x2+13x+6
=(3x+2)(2x+3)
Answer:
All points on line CD are equidistant from A and B
Step-by-step explanation:
Given that point A is the center of circle A and point B is the center of circle B, and the circumference of circle A passes through the center of circle B which is point B and vice versa.
Therefore we have;
The radius of circle A = The radius of circle B
Which gives;
The distance of the point C to the center A is equal to the distance of the point C to the center B
Similarly, the distance of the point D to the center A is equal to the distance of the point D to the center B
So also the distances of all points on the line from the center A is equal to the distances of all points on the line from the center B.
First of all, the modular inverse of n modulo k can only exist if GCD(n, k) = 1.
We have
130 = 2 • 5 • 13
231 = 3 • 7 • 11
so n must be free of 2, 3, 5, 7, 11, and 13, which are the first six primes. It follows that n = 17 must the least integer that satisfies the conditions.
To verify the claim, we try to solve the system of congruences

Use the Euclidean algorithm to express 1 as a linear combination of 130 and 17:
130 = 7 • 17 + 11
17 = 1 • 11 + 6
11 = 1 • 6 + 5
6 = 1 • 5 + 1
⇒ 1 = 23 • 17 - 3 • 130
Then
23 • 17 - 3 • 130 ≡ 23 • 17 ≡ 1 (mod 130)
so that x = 23.
Repeat for 231 and 17:
231 = 13 • 17 + 10
17 = 1 • 10 + 7
10 = 1 • 7 + 3
7 = 2 • 3 + 1
⇒ 1 = 68 • 17 - 5 • 231
Then
68 • 17 - 5 • 231 ≡ = 68 • 17 ≡ 1 (mod 231)
so that y = 68.