1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavel [41]
3 years ago
15

How do you evaluate sqrt(x^2 +6x)dx

Mathematics
1 answer:
Anastasy [175]3 years ago
6 0
Complete the square:

\displaystyle\int\sqrt{x^2+6x}\,\mathrm dx=\int\sqrt{(x+3)^2-9}\,\mathrm dx

Now substitute x+3=3\sec y, so that \mathrm dx=3\sec y\tan y\,\mathrm dy. The integral then becomes

\displaystyle\int\sqrt{(3\sec y)^2-9}(3\sec y\tan y)\,\mathrm dy
\displaystyle9\int\sqrt{\sec^2y-1}\sec y\tan y\,\mathrm dy
\displaystyle9\int\sqrt{\tan^2y}\sec y\tan y\,\mathrm dy
\displaystyle9\int\sec y\tan^2y\,\mathrm dy

Use the Pythagorean theorem to reduce the integrand to

\displaystyle9\int\sec y(\sec^2y-1)\,\mathrm dy
\displaystyle9\int(\sec^3y-\sec y)\,\mathrm dy

You can integrate \sec^3y by parts, setting

\begin{matrix}u=\sec y&&\mathrm dv=\sec^2y\,\mathrm dy\\\mathrm du=\sec y\tan y\,\mathrm dy&&v=\tan y\end{matrix}

So,

\displaystyle\int\sec^3y\,\mathrm dy=\sec y\tan y-\int\sec y\tan^2y\,\mathrm dy
\displaystyle2\int\sec^3y\,\mathrm dy=\sec y\tan y+\int\sec y\,\mathrm dy
\displaystyle\int\sec^3y\,\mathrm dy=\frac12\sec y\tan y+\frac12\int\sec y\,\mathrm dy

This means you have

\displaystyle9\left(\frac12\sec y\tan y+\frac12\int\sec y\,\mathrm dy\right)-9\int\sec y\,\mathrm dy
\displaystyle\frac92\sec y\tan y-\frac92\int\sec y\,\mathrm dy

You can integrate \sec y by writing

\displaystyle\int\sec y\frac{\sec y+\tan y}{\sec y+\tan y}\,\mathrm dy=\int\frac{\sec^2y+\sec y\tan y}{\sec y+\tan y}\,\mathrm dy=\int\frac{\mathrm dz}z=\ln|\sec y+\tan y|+C

So you are left with

\displaystyle\frac92\sec y\tan y-\frac92\ln|\sec y+\tan y|+C

Transforming back to x gives you

\displaystyle\frac92\sec\left(\arcsec\frac{x+3}3\right)\tan\left(\arcsec\frac{x+3}3\right)-\frac92\ln\left|\sec\left(\arcsec\frac{x+3}3\right)+\tan\left(\arcsec\frac{x+3}3\right)\right|+C
\displaystyle\frac92\frac{x+3}3\frac{\sqrt{x^2+6x}}3-\frac92\ln\left|\frac{x+3}3+\frac{\sqrt{x^2+6x}}3\right|+C
\displaystyle\frac{(x+3)\sqrt{x^2+6x}}2-\frac92\ln\left|\frac{x+3+\sqrt{x^2+6x}}3\right|+C
\displaystyle\frac{(x+3)\sqrt{x^2+6x}}2-\frac92\ln\left|x+3+\sqrt{x^2+6x}\right|+C
You might be interested in
4+ |2-3x| =7<br> solve for all values of x in simplest form
Simora [160]

Answer:

x = 1/12

1/12 = 0.833

Step-by-step explanation:

to find the value of x

4+ |2-3x| =7

8 - 12x = 7

-12x = 7-8

-12x = -1

x = 1/12

if we write 1/12 in simplest form so

1/12 = 0.833

5 0
3 years ago
Which came first? the chicken or your mom
NemiM [27]

Answer:

what if my moms a chicken?

Step-by-step explanation:

asking for a friend

6 0
3 years ago
Find the variable of z; 3 4.5 1.5 z
serg [7]

Answer:  1.5..?

Step-by-step explanation:

6 0
3 years ago
ASAP The ratio of the width to the length of a ratio is1:3 which of the following ratio represents a rectangle with an equivalen
Soloha48 [4]
Take whatever side lengths you have and divide that number by 1/3 in your calculator and what number is shown after doing this is the answer
4 0
3 years ago
Subtract the fraction write your answer in simplest form 6/8 - 3/10
jok3333 [9.3K]

Answer:

9/10 or 0.45 in decimal form

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • A 10-foot ladder is leaning against a wall. The base of the ladder is 2 feet from the base of the building. How far up the build
    14·1 answer
  • Help please<br>Mark as brainliest
    6·1 answer
  • The shorter leg of a 30°-60°-90° triangle is 6. What is the length of the other leg?
    10·2 answers
  • Inverse laplace transform of H(s) = 1/(s+4)^2
    13·1 answer
  • Solve for x<br><br> X+3 5/8= 7 1/4
    13·1 answer
  • A recent physical inventory at a department store reports a merchandise value of $875,435. The merchandise book value was $907,3
    7·1 answer
  • 2+d=2-3(d-5)-2 Pls show work
    13·2 answers
  • Which equation could be used to find the length of the hypotenuse?<br>​
    12·2 answers
  • Help please this is a quiz
    10·2 answers
  • Let $a_1$, $a_2$, . . . , $a_{10}$ be an arithmetic sequence. If $a_1 + a_3 + a_5 + a_7 + a_9 = 17$ and $a_2 + a_4 + a_6 + a_8 +
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!