Answer:

Step-by-step explanation:
We would like to find the <u>s</u><u>l</u><u>o</u><u>p</u><u>e</u><u> </u> of the line of the given equation .
We know that <u>s</u><u>l</u><u>o</u><u>p</u><u>e</u><u> </u><u>i</u><u>n</u><u>t</u><u>e</u><u>r</u><u>c</u><u>e</u><u>p</u><u>t</u><u> </u><u>f</u><u>o</u><u>r</u><u>m</u><u> </u> of the line is given by ,
where ,
- m is the slope
- c is y intercept
Now we can compare the given equation with the slope intercept form to find the slope . You will see that 3/4 is present at the place of m .Therefore ,
Hence <u>o</u><u>p</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>C</u><u> </u> is correct choice .
X² + x - 12 / x² - x - 20 ÷ 3x² - 24x + 45 / 12x² - 48x - 60
x² + x - 12 / x² - x - 20 * 12x² - 48x - 60 / 3x² - 24x + 45
<u>(x² + x - 12)(12x² - 48x - 60)</u>
(x² - x - 20)(3x² - 24x + 45)
<span><u>12x^4 - 48x³ - 60x² + 12x³ - 48x² - 60x - 144x² + 576x + 720</u>
</span>3x^4 - 24x³ + 45x² - 3x³ + 24x² - 45x - 60x² + 480x - 900
<span>
<u>12x^4 - 48x³ + 12x³ - 60x² - 48x² - 144x² - 60x + 576x + 720</u></span>
3x^4 - 24x³ - 3x³ + 45x² + 24x² - 60x² - 45x + 480x - 900
<u>12x^4 - 36x³ - 252x² + 516x + 720</u>
3x^4 - 27x³ + 9x² + 435x - 900
<u>12(x^4 - 3x³ - 21x² + 43x + 60) </u>
3(x^4 - 9x³ + 3x² + 145x + 300)
<u>4(</u><span><u>x^4 - 3x³ - 21x² + 43x + 60) </u>
</span><span> (x^4 - 9x³ + 3x² + 145x + 300)</span>
Answer:
Option B. The equation has a maximum value with a y-coordinate of -21.
Step-by-step explanation:
The correct quadratic equation is

This is a vertical parabola open downward (the leading coefficient is negative)
The vertex represent a maximum
Convert to vertex form
Factor -3

Complete the square


Rewrite as perfect squares

The vertex is the point (2,-21)
therefore
The equation has a maximum value with a y-coordinate of -21
Answer:
Just tried this on a calculator
)) i think its 7/2!
Step-by-step explanation: