Answer:
7n - 2 = 19
Step-by-step explanation:
7 times a number is 7n.
7 times a number, decreased by 2, is 7n - 2.
7 times a number, decreased by 2, is 19 is represented by 7n - 2 = 19
Answer:
1. M > -7
2. y < -1
3. m < -12
4. k > -2
5. c > -9
Please let me know if you need me to explain these answers! :)
Answer:16
Step-by-step explanation:Next day there will be (36+12) or 48 players.
For 36 players 12 pizzas are needed
For 1 player 12/36 pizzas are needed
For 48 players 12/36*48 or 16 pizzas are needed
Answer:
q = -8, k = 2.
r = -6.
Step-by-step explanation:
f(x) = (x - p)^2 + q
This is the vertex form of a quadratic where the vertex is at the point (p, q).
Now the x intercepts are at -6 and 2 and the curve is symmetrical about the line x = p.
The value of p is the midpoint of -6 and 2 which is (-6+2) / 2 = -2.
So we have:
f(x) = 1/2(x - -2)^2 + q
f(x) = 1/2(x + 2)^2 + q
Now the graph passes through the point (2, 0) , where it intersects the x axis, therefore, substituting x = 2 and f(x) = 0:
0 = 1/2(2 + 2)^2 + q
0 = 1/2*16 + q
0 = 8 + q
q = -8.
Now convert this to standard form to find k:
f(x) = 1/2(x + 2)^2 - 8
f(x) = 1/2(x^2 + 4x + 4) - 8
f(x) = 1/2x^2 + 2x + 2 - 8
f(x) = 1/2x^2 + 2x - 6
So k = 2.
The r is the y coordinate when x = 0.
so r = 1/2(0+2)^2 - 8
= -6.
Answer:
333.3 meters per minute
Step-by-step explanation:
<u>The best way to solve this problem is using </u><u>dimensional anaysis</u><u>. First, we write out our starting units, that being 20km/1hr. We have to keep in mind that we want to change the kilometers to meters and the hours to minutes.</u>

<u>We know that there are 1000 meters in 1 kilometer. We add this to the dimensional analysis as 1000m/1km. We write it as this because we want the kilometers to cancel each other out. We only want the meters.</u>

<u>We also know that 1 hour is 60 minutes. We add this to the analysis as well so that the hours cancel each other.</u>

<u>We now solve this expression. Since both the kilometers and the hours cancel out, we have meters per minute as our unit. All that's left are the numbers.</u>
= (20*1000*1)/(1*1*60) m/min
= 333.3 meters per minute