Answer:
- h = -16t^2 + 73t + 5
- h = -16t^2 + 5
- h = -4.9t^2 + 73t + 1.5
- h = -4.9t^2 + 1.5
Step-by-step explanation:
The general equation we use for ballistic motion is ...

where g is the acceleration due to gravity, v₀ is the initial upward velocity, and h₀ is the initial height.
The values of g commonly used are -32 ft/s², or -4.9 m/s². Units are consistent when the former is used with velocity in ft/s and height in feet. The latter is used when velocity is in m/s, and height is in meters.
_____
Dwayne throws a ball with an initial velocity of 73 feet/second. Dwayne holds the ball 5 feet off the ground before throwing it. (h = -16t^2 + 73t + 5)
A watermelon falls from a height of 5 feet to splatter on the ground below. (h = -16t^2 + 5)
Marcella shoots a foam dart at a target. She holds the dart gun 1.5 meters off the ground before firing. The dart leaves the gun traveling 73 meters/second. (h = -4.9t^2 + 73t + 1.5)
Greg drops a life raft off the side of a boat 1.5 meters above the water. (h = -4.9t^2 + 1.5)
_____
<em>Additional comment on these scenarios</em>
The dart and ball are described as being launched at 73 units per second. Generally, we expect launches of these kinds of objects to have a significant horizontal component. However, these equations are only for <em>vertical</em> motion, so we must assume the launches are <em>straight up</em> (or that the up-directed component of motion is 73 units/second).
Answer:
Q13. y = sin(2x – π/2); y = - 2cos2x
Q14. y = 2sin2x -1; y = -2cos(2x – π/2) -1
Step-by-step explanation:
Question 13
(A) Sine function
y = a sin[b(x - h)] + k
y = a sin(bx - bh) + k; bh = phase shift
(1) Amp = 1; a = 1
(2) The graph is symmetrical about the x-axis. k = 0.
(3) Per = π. b = 2
(4) Phase shift = π/2.
2h =π/2
h = π/4
The equation is
y = sin[2(x – π/4)} or
y = sin(2x – π/2)
B. Cosine function
y = a cos[b(x - h)] + k
y = a cos(bx - bh) + k; bh = phase shift
(1) Amp = 1; a = 1
(2) The graph is symmetrical about the x-axis. k = 0.
(3) Per = π. b = 2
(4) Reflected across x-axis, y ⟶ -y
The equation is y = - 2cos2x
Question 14
(A) Sine function
(1) Amp = 2; a = 2
(2) Shifted down 1; k = -1
(3) Per = π; b = 2
(4) Phase shift = 0; h = 0
The equation is y = 2sin2x -1
(B) Cosine function
a = 2, b = -1; b = 2
Phase shift = π/2; h = π/4
The equation is
y = -2cos[2(x – π/4)] – 1 or
y = -2cos(2x – π/2) - 1
Step-by-step explanation:
78 = 2 * 39 = 2 * 3 * 13.
Since 6 = 2 * 3 and its factors can be found in 78,
Hence the answer is 6. (C)