The answer is probably -2
Hey! So I’m pretty sure you multiply 56 and 2, then you swap the sides of the equation. Answer: X=112
The formula that calculates the compound rate from the given values is ![r = n(-1 + \sqrt[10n]{\frac{P + I}{P}})](https://tex.z-dn.net/?f=r%20%3D%20n%28-1%20%2B%20%5Csqrt%5B10n%5D%7B%5Cfrac%7BP%20%2B%20I%7D%7BP%7D%7D%29)
<h3>How to determine the compound interest rate?</h3>
The compound interest formula is:

Where:
- P represents the principal amount
- r represents the compound interest rate
- n represents the number of times the interest is compounded
- t represents the time in years
- I represents the interest
We start by adding P to both sides

Divide through by P

Take the nt-th root of both sides
![\sqrt[nt]{\frac{P + I}{P}} = 1 + \frac rn](https://tex.z-dn.net/?f=%5Csqrt%5Bnt%5D%7B%5Cfrac%7BP%20%2B%20I%7D%7BP%7D%7D%20%3D%201%20%2B%20%5Cfrac%20rn)
Subtract 1 from both sides
![-1 + \sqrt[nt]{\frac{P + I}{P}} = \frac rn](https://tex.z-dn.net/?f=-1%20%2B%20%5Csqrt%5Bnt%5D%7B%5Cfrac%7BP%20%2B%20I%7D%7BP%7D%7D%20%3D%20%5Cfrac%20rn)
Multiply through by n
![r = n(-1 + \sqrt[nt]{\frac{P + I}{P}})](https://tex.z-dn.net/?f=r%20%3D%20n%28-1%20%2B%20%5Csqrt%5Bnt%5D%7B%5Cfrac%7BP%20%2B%20I%7D%7BP%7D%7D%29)
In this case, t = 10
So, we have:
![r = n(-1 + \sqrt[10n]{\frac{P + I}{P}})](https://tex.z-dn.net/?f=r%20%3D%20n%28-1%20%2B%20%5Csqrt%5B10n%5D%7B%5Cfrac%7BP%20%2B%20I%7D%7BP%7D%7D%29)
Hence, the formula that calculates the compound rate is ![r = n(-1 + \sqrt[10n]{\frac{P + I}{P}})](https://tex.z-dn.net/?f=r%20%3D%20n%28-1%20%2B%20%5Csqrt%5B10n%5D%7B%5Cfrac%7BP%20%2B%20I%7D%7BP%7D%7D%29)
Read more about compound interest at:
brainly.com/question/13155407
#SPJ1
Answer:
Θ = 50°
Step-by-step explanation:
Using the cofunction identity
cosx = sin(90 - x)
Given
cos40° = sin(90 - 40)° = sin50° ⇒ Θ = 50°
Answer:
(2y - 5) (3y^2 - 4)
Step-by-step explanation:
Group and factor by using the Greatest Common Factor (GCF).
6y^3 - 15y^2 - 8y + 20
Simply multiply the terms inside the first pair of parenthesis, by the terms in the second pair of parenthesis.
2y x 3y^2 = 6y^3
2y x (-4) = 8y
-5 x 3y^2 = 15y^2
-5 x (-4) = 20
6y^3 - 8y -15y^2 + 20
Now, simply simplify the problem!
(2y - 5) (3y^2 - 4)