Answer: Yes. Splicing can be done in different ways to yield different mRNAs wich will create different proteins. Prokaryotes are not able to do this.
Explanation:
DNA (deoxyribonucleic acid) is a molecule that contains the genetic information for synthesizing amino acids that form proteins. To do this, DNA must first be transcribed into RNA (ribonucleic acid) and this is the molecule used for protein synthesis (translation). The newly transcribed RNA (called primary messenger RNA) from DNA results in a very long molecule and also has regions that do not code for anything, called introns, which are removed by a process called splicing. Exons are segments in the RNA that do code for amino acids and remain in the mature mRNA after splicing.
<u>Splicing is a process by which introns are cleaved from the primary messenger RNA and exons are joined to generate mature messenger RNA.</u> In addition, alternative splicing occurs which allows different mRNA isoforms and thus different proteins to be obtained from a primary mRNA transcript. This is because the exons will be joined or spliced in different ways, giving rise to different mature messenger RNA sequences. This process occurs mainly in eukaryotes, although it can also be observed in viruses. But it does not take place in Prokaryotes (Bacteria).
In summary, exons/introns can be spliced together in different ways to yield different mRNAs sequences. Each different mRNA sequence will code for a different protein.
Answer:
True
Explanation:
The reactants of photosynthesis are carbon dioxide and water, meaning during photosynthesis carbon dioxide and water are taken in to create energy. The reactants of cellular respiration are glucose (sugar) and oxygen, these are taken in by animals and humans to produce energy.
The fly species Drosophila santomea is found only on a single small island. Thus, this fly is considered to be "Endemic".
Answer:
The pair of terms whose relationship is very similar to the relationship between catabolism and anabolism are exergonic and endergonic.
Explanation:
Anabolism and catabolism are processes that occur in matabolism, whose result is different.
- <u><em>Anabolism </em></u><em>involves all the processes of manufacture or synthesis, in which chemicals are bound together to form new compounds. This process consumes energy, so it is called </em><em>endergonic</em><em>.
</em>
- <u><em>Catabolism</em></u><em>, unlike anabolism, is the process of degradation of complex molecules into simple molecules. One of the results of catabolism is the release of energy, which is equivalent to saying that it is an </em><em>exergonic</em><em> process.
</em>
Relating catabolism to anabolism is similar to relating exergonics to endergonics.
<em> The other terms do not represent a similarity with the relationship between the processes of catabolism and anabolism.</em>