<span><span>(<span>sinx</span>−<span>tanx</span>)</span><span>(<span>cosx</span>−<span>cotx</span>)</span></span>
<span>=<span>(<span>sinx</span>−<span><span>sinx</span><span>cosx</span></span>)</span><span>(<span>cosx</span>−<span><span>cosx</span><span>sinx</span></span>)</span></span>
<span>=<span>sinx</span><span>(1−<span>1<span>cosx</span></span>)</span><span>cosx</span><span>(1−<span>1<span>sinx</span></span>)</span></span>
<span>=<span>sinx</span><span>(<span><span>cosx</span><span>cosx</span></span>−<span>1<span>cosx</span></span>)</span><span>cosx</span><span>(<span><span>sinx</span><span>sinx</span></span>−<span>1<span>sinx</span></span>)</span></span>
<span>=<span><span>sinx</span><span>cosx</span></span><span>(<span>cosx</span>−1)</span><span><span>cosx</span><span>sinx</span></span><span>(<span>sinx</span>−1)</span></span>
<span>=<span>(<span>cosx</span>−1)</span><span>(<span>sinx</span>−1<span>)</span></span></span>
Answer:
(3x2 + 1) • (4x - 1)
Step-by-step explanation:
Equation at the end of step 1 :
(((12 • (x3)) - 3x2) + 4x) - 1
Equation at the end of step 2 :
(((22•3x3) - 3x2) + 4x) - 1
Checking for a perfect cube :
12x3-3x2+4x-1 is not a perfect cube
Trying to factor by pulling out :
Factoring: 12x3-3x2+4x-1
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: 4x-1
Group 2: 12x3-3x2
Pull out from each group separately :
Group 1: (4x-1) • (1)
Group 2: (4x-1) • (3x2)
-------------------
Add up the two groups :
(4x-1) • (3x2+1)
Final result :
(3x2 + 1) • (4x - 1)
The number of cd’s in Walters collection is 36.
x+3x=144
4x=144
144/4=36
X=36