You just have to draw to circles on top and tree circles on bottom and you just have to draw a line on circle on the three and on circle on the other three and you just count how many lines there are but i just did it in my head
Answer:
translation
Step-by-step explanation:
Answer:

Step-by-step explanation:
we know that
To find the inverse of a function, exchange variables x for y and y for x. Then clear the y-variable to get the inverse function.
we will proceed to verify each case to determine the solution of the problem
<u>case A)</u> 
Find the inverse of f(x)
Let
y=f(x)
Exchange variables x for y and y for x
Isolate the variable y


Let


therefore
f(x) and g(x) are inverse functions
<u>case B)</u> 
Find the inverse of f(x)
Let
y=f(x)
Exchange variables x for y and y for x
Isolate the variable y


Let


therefore
f(x) and g(x) are inverse functions
<u>case C)</u> ![f(x)=x^{5}, g(x)=\sqrt[5]{x}](https://tex.z-dn.net/?f=f%28x%29%3Dx%5E%7B5%7D%2C%20g%28x%29%3D%5Csqrt%5B5%5D%7Bx%7D)
Find the inverse of f(x)
Let
y=f(x)
Exchange variables x for y and y for x
Isolate the variable y
fifth root both members
![y=\sqrt[5]{x}](https://tex.z-dn.net/?f=y%3D%5Csqrt%5B5%5D%7Bx%7D)
Let

![f^{-1}(x)=\sqrt[5]{x}](https://tex.z-dn.net/?f=f%5E%7B-1%7D%28x%29%3D%5Csqrt%5B5%5D%7Bx%7D)
therefore
f(x) and g(x) are inverse functions
<u>case D)</u> 
Find the inverse of f(x)
Let
y=f(x)
Exchange variables x for y and y for x
Isolate the variable y





Let



therefore
f(x) and g(x) is not a pair of inverse functions
Answer:
B and C
Step-by-step explanation:
If you take the least common factor you'd see that it could be factored to 2(12m-6p+36)
If you take the greatest common factor then it could be factored to 12(2m-p+6)
9514 1404 393
Answer:
y = 3x^2 +30x +69
Step-by-step explanation:
Transformations work this way:
g(x) = k·f(x) . . . . vertical stretch by a factor of k
g(x) = f(x -h) +k . . . . translation (right, up) by (h, k)
__
So, the translation down 2 units will make the function be ...
f(x) = x^2 ⇒ f1(x) = f(x) -2 = x^2 -2
The vertical stretch by a factor of 3 will make the function be ...
f1(x) = x^2 -2 ⇒ 3·f1(x) = f2(x) = 3(x^2 -2)
The horizontal translation left 5 units will make the function be ...
f2(x) = 3(x^2 -2) ⇒ f2(x +5) = f3(x) = 3((x +5)^2 -2)
The transformed function equation can be written ...
y = 3((x +5)^2 -2) = 3(x^2 +10x +25 -2)
y = 3x^2 +30x +69
__
The attachment shows the original function and the various transformations. Note that the final function is translated down 6 units from the original. That is because the down translation came <em>before</em> the vertical scaling.