1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SCORPION-xisa [38]
4 years ago
9

Each length unit on the speedway diagram represents one-tenth of a mile. What is the area of the sector associated with turn A i

n units of square miles? Use the value 3.142, and round your answer to four decimal places.

Mathematics
1 answer:
Alecsey [184]4 years ago
5 0
We know that 
area of a circle=pi*r²
turn A
r=3 units------> 3*(1/10)----> 0.3 miles
area of a circle=3.142*0.3²-----> 0.28278 miles²

by proportion
0.28278/360°=A/90°------> A=90*0.28278/360------> A=0.0707 miles²

the answer is
0.0707 miles²

You might be interested in
Evaluate [6+3(-2)]-6
bagirrra123 [75]

Answer: -6

Multiply 3 by -2 first =-6 inside brackets

Original 6 inside brackets plus -6 from performing multiplication problem inside the brackets equals 0, so you now have 0 minus the original -6 which equals -6 overall

Step-by-step explanation:

8 0
3 years ago
What is the answer and how do I solve?
8_murik_8 [283]
Because it is a 90° angle and the legs are congruent, the legs intersect with the hypotenuse at the same angle, so the other, unnamed angle at the bottom left is equal to x.

Now we can state that:

2x + 90 = 180
2x = 90
x = 45
4 0
3 years ago
Which equation shows the correct use of the Distributive Property? <br> −4(32x−12)=−15
KengaRu [80]

Answer:

-128x + 48 = -15

Step-by-step explanation:

I don't any  choices to pick from but using the distributive property you will multiply the -4 by everything in the parenthesis.

-4(32x - 12) = -15

=-128x + 48 = -15.

6 0
3 years ago
Read 2 more answers
The planets in our solar system do not travel in circular paths. Rather, their orbits are elliptical. The Sun is located at a fo
qwelly [4]

1. The distance between the perihelion and the aphelion is 116 million miles

2. The distance from the center of Mercury’s elliptical orbit and the Sun is 12 million miles

3. The equation of the elliptical orbit of Mercury is \frac{x^{2}}{3364}}+\frac{y^{2}}{3220}=1

4. The eccentricity of the ellipse is 0.207 to the nearest thousandth

5. The value of the eccentricity tell you that the shape of the ellipse is near to the shape of the circle

Step-by-step explanation:

Let us revise the equation of the ellipse is

\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 , where the major axis is parallel to the x-axis

  • The length of the major axis is 2a
  • The coordinates of the vertices are (± a , 0)
  • The coordinates of the foci are (± c , 0) , where c² = a² - b²

∵ The Sun is located at a focus of the ellipse

∴ The sun located ate c

∵ The perihelion is the point in a planet’s orbit that is closest to the

   Sun ( it is the endpoint of the major axis that is closest to the Sun )

∴ The perihelion is located at the vertex (a , 0)

∵ The closest Mercury comes to the Sun is about 46 million miles

∴ The distance between a and c is 46 million miles

∵ The aphelion is the point in the planet’s orbit that is furthest from

   the Sun ( it is the endpoint of the major axis that is furthest from

   the Sun )

∴ The aphelion is located at the vertex (-a , 0)

∵ The farthest Mercury travels from the Sun is about 70 million miles

∴ The distance from -a to c is 70 million miles

∴ The distance between the perihelion and the aphelion =

   70 + 46 = 116 million miles

1. The distance between the perihelion and the aphelion is 116 million miles

∵ The distance between the perihelion and the aphelion is the

  length of the major axis of the ellipse

∵ The length of the major axis is 2 a

∴ 2 a = 116

- Divide both sides by 2

∴ a = 58

∴ The distance from the center of Mercury’s elliptical orbit to the

   closest end point to the sun is 58 million miles

∵ The distance between the sun and the closest endpoint is

   46 million miles

∴ The distance from the center of Mercury’s elliptical orbit and

   the Sun = 58 - 46 = 12 million miles

2. The distance from the center of Mercury’s elliptical orbit and the Sun is 12 million miles

∵ The major axis runs horizontally

∴ The equation is \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1

∵ a = 58

∵ c is the distance from the center to the focus of the ellipse

∴ c = 12

∵ c² = a² - b²

∴ (12)² = (58)² - b²

- Add b² to both sides

∴ (12)² + b² = (58)²

- Subtract (12)² from both sides

∴ b² = (58)² - (12)² = 3220

- Substitute these values in the equation

∴ \frac{x^{2}}{3364}}+\frac{y^{2}}{3220}=1

3. The equation of the elliptical orbit of Mercury is \frac{x^{2}}{3364}}+\frac{y^{2}}{3220}=1

The eccentricity (e) of an ellipse is the ratio of the distance from the

center to the foci (c) and the distance from the center to the

vertices (a) ⇒ e=\frac{c}{a}

∵ c = 12

∵ a = 58

∴ e=\frac{12}{58} = 0.207

4. The eccentricity of the ellipse is 0.207 to the nearest thousandth

If the eccentricity is zero, it is not squashed at all and so remains a circle.

If it is 1, it is completely squashed and looks like a line

∵ The eccentricity of the ellipse is 0.207

∵ This number is closed to zero than 1

∴ The shape of the ellipse is near to the shape of the circle

5. The value of the eccentricity tell you that the shape of the ellipse is near to the shape of the circle

Learn more:

You can learn more about conics section in brainly.com/question/4054269

#LearnwithBrainly

5 0
3 years ago
The triangle below is equilateral. Find the length of side x to the nearest tenth.
Gemiola [76]

Answer:

\sqrt{\frac{15}{2} } or 2.738

Step-by-step explanation:

Let’s just look at the triangle on the top with the \sqrt{10} on the top and x on the bottom. (Basically the top half to the equilateral triangle)

There is a small square in the bottom right corner, which indicates that this triangle is a right triangle. This means that we can use the Pythagorean Theorem: a^{2} +b^{2} =c^{2}

We know that \sqrt{10} is our hypotenuse, and therefore our c in our equation. Let’s say that x=a in our equation. Therefore we are left to find b. However, b is half the length of the side of the original equilateral triangle. An equilateral triangle means that all three sides are the same length. Therefore our side would also be \sqrt{10} units long. However we know that b is half of that value, so b=\frac{1}{2}(\sqrt{10}) or \frac{\sqrt{10} }{2}

Plugging these values into the equation:

x^2+ (\frac{\sqrt{10} }{2})^{2}=\sqrt{10} ^{2}

x^{2}=\sqrt{10} ^{2}-\frac{\sqrt{10} }{2} ^{2}

x^{2} =10-\frac{10}{4}

x^{2} =\frac{15}{2}

x=\sqrt{\frac{15}{2} }

This approximately equals 2.738

5 0
2 years ago
Read 2 more answers
Other questions:
  • The surface area of a cube is 54 square feet what is the length, in feet, of one edge of the cube
    14·1 answer
  • in a given year, the rate of flu infection for the general public was 8.3%. And sample of 200 people who receive the flu vaccine
    6·1 answer
  • Need help solving x
    6·1 answer
  • 3e - 7 = 19
    13·2 answers
  • A 4m ladder rest against a vertical wall with its foot 2m from the wall.How far up the wall does the ladder reach?
    9·1 answer
  • Jennifer is playing with a die that has six faces. What is the likelihood that she will roll a four?
    12·2 answers
  • In a class of 7 there are 2 students who forgot their lunch. If the teacher chooses 2 students what is the probability that both
    7·1 answer
  • A grocer has 18kg of black tea worth 3.5per kg. She wants to mix
    14·1 answer
  • (9-3)+18÷8 <br>show your work ​
    15·2 answers
  • PLEASE HELP ASAP WILL MARK BRAINLIEST!!!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!