So first let’s put g(f(x)) together by putting f(x) for every x in g(x)
We get g(f(x))=3(3/4x+3)+4 which is the selling price equation
Then you plug in 20 to find the selling price for 20 muffins.
g(f(x))=3(3/4(20)+3)+4
g(f(x))=3(60/4+3)+4
g(f(x))=3(18)+4
g(f(x))=54+4
g(f(x))=58
So the selling price will be $58 for 20 muffins.
Answer:
Given definite integral as a limit of Riemann sums is:
![\lim_{n \to \infty} \sum^{n} _{i=1}3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]](https://tex.z-dn.net/?f=%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Csum%5E%7Bn%7D%20_%7Bi%3D1%7D3%5B%5Cfrac%7B9%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B36%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B97%7D%7B2n%7Di%2B22%5D)
Step-by-step explanation:
Given definite integral is:

Substituting (2) in above
![f(x_{i})=\frac{1}{2}(4+\frac{3}{n}i)+(4+\frac{3}{n}i)^{3}\\\\f(x_{i})=(2+\frac{3}{2n}i)+(64+\frac{27}{n^{3}}i^{3}+3(16)\frac{3}{n}i+3(4)\frac{9}{n^{2}}i^{2})\\\\f(x_{i})=\frac{27}{n^{3}}i^{3}+\frac{108}{n^{2}}i^{2}+\frac{3}{2n}i+\frac{144}{n}i+66\\\\f(x_{i})=\frac{27}{n^{3}}i^{3}+\frac{108}{n^{2}}i^{2}+\frac{291}{2n}i+66\\\\f(x_{i})=3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]](https://tex.z-dn.net/?f=f%28x_%7Bi%7D%29%3D%5Cfrac%7B1%7D%7B2%7D%284%2B%5Cfrac%7B3%7D%7Bn%7Di%29%2B%284%2B%5Cfrac%7B3%7D%7Bn%7Di%29%5E%7B3%7D%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D%282%2B%5Cfrac%7B3%7D%7B2n%7Di%29%2B%2864%2B%5Cfrac%7B27%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B3%2816%29%5Cfrac%7B3%7D%7Bn%7Di%2B3%284%29%5Cfrac%7B9%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%29%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D%5Cfrac%7B27%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B108%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B3%7D%7B2n%7Di%2B%5Cfrac%7B144%7D%7Bn%7Di%2B66%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D%5Cfrac%7B27%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B108%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B291%7D%7B2n%7Di%2B66%5C%5C%5C%5Cf%28x_%7Bi%7D%29%3D3%5B%5Cfrac%7B9%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B36%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B97%7D%7B2n%7Di%2B22%5D)
Riemann sum is:
![= \lim_{n \to \infty} \sum^{n} _{i=1}3[\frac{9}{n^{3}}i^{3}+\frac{36}{n^{2}}i^{2}+\frac{97}{2n}i+22]](https://tex.z-dn.net/?f=%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Csum%5E%7Bn%7D%20_%7Bi%3D1%7D3%5B%5Cfrac%7B9%7D%7Bn%5E%7B3%7D%7Di%5E%7B3%7D%2B%5Cfrac%7B36%7D%7Bn%5E%7B2%7D%7Di%5E%7B2%7D%2B%5Cfrac%7B97%7D%7B2n%7Di%2B22%5D)
Answer:
Hi I hope you have a wonderful day!!
Step-by-step explanation:
I hope this makes your day :))!
Answer:
The maximum value of the equation is 1 less than the maximum value of the graph
Step-by-step explanation:
We have the equation
.
We can know that this graph will have a maximum value as this is a negative parabola.
In order to find the maximum value, we can use the equation 
In our given equation:
a=-1
b=4
c=-8
Now we can plug in these values to the equation

Now we can plug the x value where the maximum occurs to find the max value of the equation

This means that the maximum of this equation is -4.
The maximum of the graph is shown to be -3
This means that the maximum value of the equation is 1 less than the maximum value of the graph
Answer:
-5/3
Step-by-step explanation: