Surely, If cells did not work together in an organism, there won't be formation of new cells and life process would stop
<h3>Living organisms </h3>
Living organisms; be it plants or animals are any organic or living system composed of cells and function as an individual entity.
- All living organisms share a number of key characteristics or functions such as movement, respiration, homeostasis, reproduction, growth, evolution, competition and others.
- Animals and plants also posess systems such as the digestive, skeletal, transport, nervous, excretory, respiratory and reproductive system.
- Living organisms are also taxonomically classified as either unicellular microorganisms or multicellular plants and animals
So therefore, surely, If cells did not work together in an organism, there won't be formation of new cells and life process would stop
Learn more about living organisms:
brainly.com/question/17259533
#SPJ1
The concentration of the sodium chloride would be 0.082 M
<h3>Stoichiometric calculations</h3>
From the equation of the reaction, the ratio of AgCl produced to NaCl required is 1:1.
Mole of 46.6 g AgCl produced = 46.6/143.32 = 0.325 moles
Equivalent mole of NaCl = 0.325 moles.
Molarity of 0.325 moles, 3.95 L NaCl = mole/volume = 0.325/3.95 = 0.082 M
More on stoichiometric calculations can be found here: brainly.com/question/27287858
#SPJ1
___AlBr3 + ___K -> ___KBr + ___ Al
1 AlBr3 + 3K -> 3KBr + 1 Al
hope this helps............
I need a little more context but I believe you are correct
Using the Henderson-Hasselbalch equation on the solution before HCl addition: pH = pKa + log([A-]/[HA]) 8.0 = 7.4 + log([A-]/[HA]); [A-]/[HA] = 4.0. (equation 1) Also, 0.1 L * 1.0 mol/L = 0.1 moles total of the compound. Therefore, [A-] + [HA] = 0.1 (equation 2) Solving the simultaneous equations 1 and 2 gives: A- = 0.08 moles AH = 0.02 moles Adding strong acid reduces A- and increases AH by the same amount. 0.03 L * 1 mol/L = 0.03 moles HCl will be added, soA- = 0.08 - 0.03 = 0.05 moles AH = 0.02 + 0.03 = 0.05 moles Therefore, after HCl addition, [A-]/[HA] = 0.05 / 0.05 = 1.0 Resubstituting into the Henderson-Hasselbalch equation: pH = 7.4 + log(1.0) = 7.4, the final pH.