Answer:
1.2029 J/g.°C
Explanation:
Given data:
Specific heat capacity of titanium = 0.523 J/g.°C
Specific heat capacity of 2.3 gram of titanium = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
1 g of titanium have 0.523 J/g.°C specific heat capacity
2.3 × 0.523 J/g.°C
1.2029 J/g.°C
Answer:
1) Increasing temperature
2) Stirring
3) Increasing surface area of salt by grinding it
Answer:
length of wire = 38.82 m
Explanation:
∴ 16 gauge ≡ 0.05082 in * ( 2.54 cm/in ) = 0.12908 cm
∴ m spool = 1 Lb = 453.592 g
∴ ρ = 8.92 g/cm³
cross section area:
⇒ A = π*D²/4 = π*(0.12908)²/4 = 0.0131 cm²
⇒ L = ((453.592 g) *(cm³/8.92 g)) / ( 0.0131 cm² )
⇒ L = 3881.765 cm * ( m/100cm) = 38.82 m
<span>because p6 will be the group 8. You have to count the 2 electrons from the "s" block that are Group I and Group II
Group I s1
Group II s2
Group III s2 p1
Group IV s2 p2
Group V s2 p3
Group VI s2 p4
Group VII s2 p5
Group VIII s2 p6</span>
Answer:

Explanation:
I am assuming that we have to balance this equation. On the left side, we have one Fe, 2 H, 2 Cl, and 1 S. On the right side, we have 1 Fe, 1 H, 1 Cl, and 1 S. Adding a 2 as a coefficient in front of the HCl on the right side will make 2 H and 2 Cl instead, balancing the overall equation.