Answer:
D. (y-2) becomes (y-5) and -5 < -2
Step-by-step explanation:
When transforming functions, the following applies:
• Adding/subtracting inside the parenthesis to the input shifts the function left(+) and right(-).
• Adding/subtracting outside the parenthesis to the output shifts the function up(+) and down(-).
• Multiplying the function by a number less than 1 compresses it towards the x-axis.
• Multiplying the function by a number greater than 1 stretches it away from the x-axis.
In this situation, the circle is shifted up 3 units and the variable y which controls this is in the function. To move it up you will subtract 3 in the parenthesis for (y-2) so it becomes (y-5). This will move the vertex 3 units higher.
<h2><u>Part A:</u></h2>
Let's denote no of seats in first row with r1 , second row with r2.....and so on.
r1=5
Since next row will have 10 additional row each time when we move to next row,
So,
r2=5+10=15
r3=15+10=25
<u>Using the terms r1,r2 and r3 , we can find explicit formula</u>
r1=5=5+0=5+0×10=5+(1-1)×10
r2=15=5+10=5+(2-1)×10
r3=25=5+20=5+(3-1)×10
<u>So for nth row,</u>
rn=5+(n-1)×10
Since 5=r1 and 10=common difference (d)
rn=r1+(n-1)d
Since 'a' is a convention term for 1st term,
<h3>
<u>⇒</u><u>rn=a+(n-1)d</u></h3>
which is an explicit formula to find no of seats in any given row.
<h2><u>Part B:</u></h2>
Using above explicit formula, we can calculate no of seats in 7th row,
r7=5+(7-1)×10
r7=5+(7-1)×10 =5+6×10
r7=5+(7-1)×10 =5+6×10 =65
which is the no of seats in 7th row.
<h2>x = 13</h2>
Step-by-step explanation:

The answer would be 3 hope helps
Pretty sure when you multiply something by 0 it is 0 <span />