Answer:

Explanation:
Given that,
The specific heat of water is 4.184Jg°C
Mass, m = 600 g
Initial temperature, T₁ = 75.5°C
We need to find the final temperature. We know that heat absorbed is given by :

So, the final temperature is equal to
.
Answer : The correct option is D.
Explanation :
Balanced chemical equation : It is defined as the mass or component of each atom should be equal on both sides of the equation.
The balanced chemical equation for the reaction of
and
is,

So, the correct option is D.
AlPO4----> Al+3 + PO4-3
Ksp= [Al+3] x [PO4-3]= 9.84 x 10^-21
Ksp= (x) (x)= x^2
X^2= 9.84x10-21
x= 9.92 x 10^-11
The molar solubility is 9.92 x 10^-11
N=3^K-1 I really don't know how to explain it but that's the formula <span />
Answer:
Explanation:
Molar heat capacity at constant volume Cv of a gas = n x .5 R where n is degree of freedom of the gas molecules
CO₂ is a linear molecule , so number of degree of freedom = 3 + 2 = 5
3 is translational and 2 is rotational degree of freedom . There is no vibrational degree of freedom given .
So Cv = 5 / 2 R
= 2.5 R .