STP is abbreviation for Standard Temperature and Pressure at which the temperature is 273 K and pressure is 1 atm
- At these conditions the molar volume is equal to 22.4 L
so 1 mole of SO₂ volume = 22.4 L
? mole of SO₂ volume = 2.5 L
number of moles = 2.5 / 22.4 = 0.1116 mol
mass of SO₂ = 0.1116 * 64.063 = 7.15 g
Answer:
Depends on molecule.
Explanation:
The number of the polypeptide chains present in the oligomer depends on the molecule. Some molecules have more polypeptide chains whereas some of them have less polypeptide chains. For example, Hemoglobin is a oligomer that consists of four Polypeptide Chains, two of these Polypeptide Chains are α-globin molecules, each comprise of 141 amino acids, and the other two are (β, γ, δ, or ε) globins, each consist of 146 amino acids.
<u>Answer:</u> The correct answer is Option D.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
Hence, the correct answer is Option D.
Δ H reaction = q / n where q: amount of heat released and n is number of moles of substance.
q = m . C . ΔT where:
m = mass of substance (g)
C = Specific heat capacity (4.18)
ΔT = change in temperature = 24.25 - 23.16 = 1.09
q = 1000 x 4.18 x 1.09 = 4556 J = 4.556 kJ
number of moles (n) = Molarity (M) x Volume (L)
= 0.185 M x 0.07 L = 0.01295 mole
Δ H = q / n = - (4.556 kJ / 0.01295 mole) = -351.8 kJ / mol
Note: it is exothermic reaction (-ve sign) i.e. temperature is raised
Yes I think it’s look right to me