Your answer would be ~ 305.83 !!
Hello!
Ignore the negative and solve the square root which is 13.
Add the negative with 13 you get -13
Special case is when it is square root of -169 then it will involved with i.
But for this question just solve it directly.
Have a great day!
The polynomial is (mx^3+3)(2x²+5x+2)-(8x^5 +20x^4)
if it is reduced to 8x^3+6x²+15x+6, so we can find the value of m
(mx^3+3)(2x²+5x+2)-(8x^5+20x^4) = <span>8x^3+6x²+15x+6
</span>2mx^5+5mx^4+2mx^3+6x²+15x+6-8x^5-20x^4=<span>8x^3+6x²+15x+6
</span>2mx^5+5mx^4+2mx^3=8x^3+6x²+15x+6-6x²-15x-6+ <span>8x^5+20x^4
</span>= 8x^5+20x^4+<span>8x^3= 4(2x^5+5x^4+2x^3)
finally
</span>m(2x^5+5x^4+2x^3)=<span>4(2x^5+5x^4+2x^3), and after simplification
</span>
C: m=4
<span>4. When the expression is factored x²-3x-18 completely,
</span>
one of its factor is x-6
<span>x²-3x-18=0
</span>D= 9-4(-18)= 81, sqrtD=9 x=3-9/2= -6/2= -3, and x=3+9 / 2= 6
so <span>x²-3x-18= (x-6)(x+6)
</span>
Daddy daddy daddy daddy and daddy
Check the picture below.
the triangle has that base and that height, recall that A = 1/2 bh.
now as for the perimeter, you can pretty much count the units off the grid for the segment CB, so let's just find the lengths of AC and AB,


so, add AC + AB + CB, and that's the perimeter of the triangle.