The number of ways for which she could pick four colours if green must be one of them is; 10 ways.
<h3>How many ways can she picks four colours if green must be there?</h3>
It follows from the task that there are 6 colours in total that she could pick from.
Hence, since she needs four colours with green being one of them, it follows that she only has 3 colours to pick from 5.
Hence, the numbers of possible combinations is; 5C3 = 10 ways.
Read more on combinations;
brainly.com/question/2280043
#SPJ1
Given,
A sign company charges $28 per yard for each custom-made banner.
Ms.Gill orders two banners that are each 178 yards long, and one banner that is 258 yards long.
To find,
Total money paid by Ms. Gill.
Solution,
Total length of 2 banners of 178 yards = 356 yards
Third banner is 258 yards long.
Total length of the banners = 356 + 258
= 614 yards
The cost of each banner = $28 per yards.
Total amount paid by Ms. Gill is :
= $28 × 614
= $17,192
Hence, she will pay $17,192 for all the three banners.
![\rightarrow z^4=-625\\\\\rightarrow z=(-625+0i)^{\frac{1}{4}}\\\\\rightarrow x+iy=(-625+0i)^{\frac{1}{4}}\\\\ x=r \cos A\\\\y=r \sin A\\\\r \cos A=-625\\\\ r \sin A=0\\\\x^2+y^2=625^{2}\\\\r^2=625^{2}\\\\|r|=625\\\\ \tan A=\frac{0}{-625}\\\\ \tan A=0\\\\ A=\pi\\\\\rightarrow z= [625(\cos (2k \pi+pi) +i \sin (2k\pi+ \pi)]^{\frac{1}{4}}\\\\k=0,1,2,3,4,....\\\\\rightarrow z=(625)^{\frac{1}{4}}[\cos \frac{(2k \pi+pi)}{4} +i \sin \frac{(2k\pi+ \pi)}{4}]](https://tex.z-dn.net/?f=%5Crightarrow%20z%5E4%3D-625%5C%5C%5C%5C%5Crightarrow%20z%3D%28-625%2B0i%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5C%5C%5Crightarrow%20x%2Biy%3D%28-625%2B0i%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5C%5C%20x%3Dr%20%5Ccos%20A%5C%5C%5C%5Cy%3Dr%20%5Csin%20A%5C%5C%5C%5Cr%20%5Ccos%20A%3D-625%5C%5C%5C%5C%20r%20%5Csin%20A%3D0%5C%5C%5C%5Cx%5E2%2By%5E2%3D625%5E%7B2%7D%5C%5C%5C%5Cr%5E2%3D625%5E%7B2%7D%5C%5C%5C%5C%7Cr%7C%3D625%5C%5C%5C%5C%20%5Ctan%20A%3D%5Cfrac%7B0%7D%7B-625%7D%5C%5C%5C%5C%20%5Ctan%20A%3D0%5C%5C%5C%5C%20A%3D%5Cpi%5C%5C%5C%5C%5Crightarrow%20z%3D%20%5B625%28%5Ccos%20%282k%20%5Cpi%2Bpi%29%20%2Bi%20%5Csin%20%282k%5Cpi%2B%20%5Cpi%29%5D%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5C%5Ck%3D0%2C1%2C2%2C3%2C4%2C....%5C%5C%5C%5C%5Crightarrow%20z%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B%282k%20%5Cpi%2Bpi%29%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B%282k%5Cpi%2B%20%5Cpi%29%7D%7B4%7D%5D%20)
![\rightarrow z_{0}=(625)^{\frac{1}{4}}[\cos \frac{pi}{4} +i \sin \frac{\pi)}{4}]\\\\\rightarrow z_{1}=(625)^{\frac{1}{4}}[\cos \frac{3\pi}{4} +i \sin \frac{3\pi}{4}]\\\\ \rightarrow z_{2}=(625)^{\frac{1}{4}}[\cos \frac{5\pi}{4} +i \sin \frac{5\pi}{4}]\\\\ \rightarrow z_{3}=(625)^{\frac{1}{4}}[\cos \frac{7\pi}{4} +i \sin \frac{7\pi}{4}]](https://tex.z-dn.net/?f=%5Crightarrow%20z_%7B0%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7Bpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B%5Cpi%29%7D%7B4%7D%5D%5C%5C%5C%5C%5Crightarrow%20z_%7B1%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B3%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B3%5Cpi%7D%7B4%7D%5D%5C%5C%5C%5C%20%5Crightarrow%20z_%7B2%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%5D%5C%5C%5C%5C%20%5Crightarrow%20z_%7B3%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B7%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B7%5Cpi%7D%7B4%7D%5D)
Argument of Complex number
Z=x+iy , is given by
If, x>0, y>0, Angle lies in first Quadrant.
If, x<0, y>0, Angle lies in Second Quadrant.
If, x<0, y<0, Angle lies in third Quadrant.
If, x>0, y<0, Angle lies in fourth Quadrant.
We have to find those roots among four roots whose argument is between 270° and 360°.So, that root is
![\rightarrow z_{2}=(625)^{\frac{1}{4}}[\cos \frac{5\pi}{4} +i \sin \frac{5\pi}{4}]](https://tex.z-dn.net/?f=%20%5Crightarrow%20z_%7B2%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%5D)