There is not expression listed above.
Had to answer it on notepad. Hope This Is Right.
The question is incomplete. The complete question is :
Justin drinks 1 litter of water during the soccer practice. He drank 2,000 milliliters of water at his game. How many liters of water did he drink during his game and his practice? Explain.
Solution :
It is given that :
During practice, Justine drank = 1 liter of water
During game, Justine drank = 2000 milliliters of water
We know that,
1 liter = 1000 mL
Therefore, during the game, Justine drank :
1000 mL = 1 liter
∴ 2000 mL = 2 liter
So Justine drank 2 liters of water during his soccer game and 1 liter of water during his practice.
Answer:
Step-by-step explanation:
In matrix form, the system is given by

I'll use G-J elimination. Consider the augmented matrix
![\left[ \begin{array}{ccc|c} -1 & 1 & -1 & -20 \\ 2 & -1 & 1 & 29 \\ 3 & 2 & 1 & 29 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%20-1%20%26%201%20%26%20-1%20%26%20-20%20%5C%5C%202%20%26%20-1%20%26%201%20%26%2029%20%5C%5C%203%20%26%202%20%26%201%20%26%2029%20%5Cend%7Barray%7D%20%5Cright%5D)
• Multiply through row 1 by -1.
![\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 2 & -1 & 1 & 29 \\ 3 & 2 & 1 & 29 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-1%20%26%201%20%26%2020%20%5C%5C%202%20%26%20-1%20%26%201%20%26%2029%20%5C%5C%203%20%26%202%20%26%201%20%26%2029%20%5Cend%7Barray%7D%20%5Cright%5D)
• Eliminate the entries in the first column of the second and third rows. Combine -2 (row 1) with row 2, and -3 (row 1) with row 3.
![\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 5 & -2 & -31 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-1%20%26%201%20%26%2020%20%5C%5C%200%20%26%201%20%26%20-1%20%26%20-11%20%5C%5C%200%20%26%205%20%26%20-2%20%26%20-31%20%5Cend%7Barray%7D%20%5Cright%5D)
• Eliminate the entry in the second column of the third row. Combine -5 (row 2) with row 3.
![\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 0 & 3 & 24 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-1%20%26%201%20%26%2020%20%5C%5C%200%20%26%201%20%26%20-1%20%26%20-11%20%5C%5C%200%20%26%200%20%26%203%20%26%2024%20%5Cend%7Barray%7D%20%5Cright%5D)
• Multiply row 3 by 1/3.
![\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 0 & 1 & 8 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-1%20%26%201%20%26%2020%20%5C%5C%200%20%26%201%20%26%20-1%20%26%20-11%20%5C%5C%200%20%26%200%20%26%201%20%26%208%20%5Cend%7Barray%7D%20%5Cright%5D)
• Eliminate the entry in the third column of the second row. Combine row 2 with row 3.
![\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 8 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-1%20%26%201%20%26%2020%20%5C%5C%200%20%26%201%20%26%200%20%26%20-3%20%5C%5C%200%20%26%200%20%26%201%20%26%208%20%5Cend%7Barray%7D%20%5Cright%5D)
• Eliminate the entries in the second and third columns of the first row. Combine row 1 with row 2 and -1 (row 3).
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 9 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 8 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%209%20%5C%5C%200%20%26%201%20%26%200%20%26%20-3%20%5C%5C%200%20%26%200%20%26%201%20%26%208%20%5Cend%7Barray%7D%20%5Cright%5D)
Then the solution to the system is

If you want to use G elimination and substitution, you'd stop at the step with the augmented matrix
![\left[ \begin{array}{ccc|c} 1 & -1 & 1 & 20 \\ 0 & 1 & -1 & -11 \\ 0 & 0 & 1 & 8 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-1%20%26%201%20%26%2020%20%5C%5C%200%20%26%201%20%26%20-1%20%26%20-11%20%5C%5C%200%20%26%200%20%26%201%20%26%208%20%5Cend%7Barray%7D%20%5Cright%5D)
The third row tells us that
. Then in the second row,

and in the first row,
