Answer:
x = 19
Step-by-step explanation:
The two angles with measures are supplementary.
6x + 9 + 4x - 19 = 180
10x - 10 = 180
10x = 190
x = 19
Answer:
If thrown up with the same speed, the ball will go highest in Mars, and also it would take the ball longest to reach the maximum and as well to return to the ground.
Step-by-step explanation:
Keep in mind that the gravity on Mars; surface is less (about just 38%) of the acceleration of gravity on Earth's surface. Then when we use the kinematic formulas:

the acceleration (which by the way is a negative number since acts opposite the initial velocity and displacement when we throw an object up on either planet.
Therefore, throwing the ball straight up makes the time for when the object stops going up and starts coming down (at the maximum height the object gets) the following:

When we use this to replace the 't" in the displacement formula, we et:

This tells us that the smaller the value of "g", the highest the ball will go (g is in the denominator so a small value makes the quotient larger)
And we can also answer the question about time, since given the same initial velocity
, the smaller the value of "g", the larger the value for the time to reach the maximum, and similarly to reach the ground when coming back down, since the acceleration is smaller (will take longer in Mars to cover the same distance)
Yes, the rules of scientific notation are:
1. All non-zero digits are significant
2. Zeros in between non-zeros are significant.
3. Zeros to the left of the first non-zero number are NOT significant.
4. Zeros to the right of non-zero numbers are significant IF a decimal point is present.
P.S: if you need help with sig fig rounding, let me know.
For a cuboid's volume you simply go length x width x heigth so 2x4x5 so it's 40.
Answer:
10
Step-by-step explanation:
1x2x2.5=5
5/0.5=10