so we have three points, A, B and C, if indeed AC is the diameter of the circle, then half the distance of AC is its radius, and the midpoint of AC is the center of the circle, morever, since B is also on the circle, the distance from B to the center must be the same radius distance.
in short, half the distance of AC must be equals to the distance of B to the midpoint of AC, if indeed AC is the diameter.

now, let's check the distance from say A to the center, and check the distance of B to the center, if it's indeed the center, they'll be the same and thus AC its diameter.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ A(\stackrel{x_1}{7}~,~\stackrel{y_1}{4})\qquad M(\stackrel{x_2}{\frac{19}{2}}~,~\stackrel{y_2}{\frac{7}{2}})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ AM=\sqrt{\left( \frac{19}{2}-7 \right)^2+\left( \frac{7}{2}-4 \right)^2} \\\\\\ AM=\sqrt{\left( \frac{5}{2}\right)^2+\left( -\frac{1}{2} \right)^2}\implies \boxed{AM\approx 2.549509756796392} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20A%28%5Cstackrel%7Bx_1%7D%7B7%7D~%2C~%5Cstackrel%7By_1%7D%7B4%7D%29%5Cqquad%20M%28%5Cstackrel%7Bx_2%7D%7B%5Cfrac%7B19%7D%7B2%7D%7D~%2C~%5Cstackrel%7By_2%7D%7B%5Cfrac%7B7%7D%7B2%7D%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20AM%3D%5Csqrt%7B%5Cleft%28%20%5Cfrac%7B19%7D%7B2%7D-7%20%5Cright%29%5E2%2B%5Cleft%28%20%5Cfrac%7B7%7D%7B2%7D-4%20%5Cright%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20AM%3D%5Csqrt%7B%5Cleft%28%20%5Cfrac%7B5%7D%7B2%7D%5Cright%29%5E2%2B%5Cleft%28%20-%5Cfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%7D%5Cimplies%20%5Cboxed%7BAM%5Capprox%202.549509756796392%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
(2x+3)(x+1)
Step-by-step explanation:
6x² + 2x + 9x +3
(6x² + 2x) + (9x +3)
2x (x+1) + 3 (x+1)
(2x+3)(x+1)
Answer:
<h3>The answer is 24</h3>
Step-by-step explanation:
5t + 2m
m = 7 t = 2
Substitute the above values into the expression
That's
5(2) + 2(7)
10 + 14
24
Hope this helps you
Answer:
<u>The number is 296.</u>
Step-by-step explanation:
Let's call "x" to the number we are looking for.
Now, the problem states that "5 more than the quotient of a number and 8 is 42". This means that this number is being divided by 8, it's also being additioned 5 and the final result is 42. Therefore, the expression of this operations on this number is the following:
. Let's solve the equation to find x.
1. Write the expression.

2. Substract 5 from both sides and simplify.

3. Multiply 8 on both sides and simplify.

<u>We have found our number, it's 296!</u>