1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goblinko [34]
3 years ago
11

Nadia cute 3 pieces of equal length from 8 yards of ribbon. How long is each piece

Mathematics
2 answers:
Ivan3 years ago
7 0
8 divided by 3 equals 2.66
LiRa [457]3 years ago
5 0
To find out how long each individual piece is, divide the number of total yards (8) by the number of pieces (3) like so:

8/3 = 2.66666...

If you need the fraction version of 2.66666... that would be 2 1/3 

So each piece of ribbon is 2 1/3 long :)
You might be interested in
HELP ME PLEASE!!!!! Question 14
vfiekz [6]

Answer:

yo this is for a quiz right

8 0
3 years ago
72:24=15:__ Please Help Me Solve This Math Problem!
mixer [17]
Took me about 45 min to get the answer and for me it is.

Answer: x=5
7 0
3 years ago
On a number line point x is located at 2 / 3 on a second number line point y is the same distance from zero as point x what has
bezimeni [28]

Answer:

12

Step-by-step explanation:

Given that :

Point X on number line 1 from 0= 2/3

Point Y on number line 2 from 0 = same distance as point X on number line

Point Y has a denominator of 8 ; the numerator is thus;°

Let denominator = d ; Fraction becomes 8/d

Thus `

Point X on 1 = point Y

2/3 = 8/ d

2d = 3 * 8

2d = 24

d = 12

8 0
3 years ago
The problem is attached, thanks.
NeX [460]

Answer:

\displaystyle \frac{dy}{dx} \bigg| \limit_{(1, 4)} = 2

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Coordinates (x, y)
  • Exponential Rule [Root Rewrite]:                                                                 \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}
  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Implicit Differentiation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \sqrt{x} - \sqrt{y} = -1

Point (1, 4)

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                               \displaystyle x^{\frac{1}{2}} - y^{\frac{1}{2}} = -1
  2. [Implicit Differentiation] Basic Power Rule:                                                 \displaystyle \frac{1}{2}x^{\frac{1}{2} - 1} - \frac{1}{2}y^{\frac{1}{2} - 1}\frac{dy}{dx} = 0
  3. [Implicit Differentiation] Simplify Exponents:                                               \displaystyle \frac{1}{2}x^{\frac{-1}{2}} - \frac{1}{2}y^{\frac{-1}{2}}\frac{dy}{dx} = 0
  4. [Implicit Differentiation] Rewrite [Exponential Rule - Rewrite]:                   \displaystyle \frac{1}{2x^{\frac{1}{2}}} - \frac{1}{2y^{\frac{1}{2}}}\frac{dy}{dx} = 0
  5. [Implicit Differentiation] Isolate <em>y</em> terms:                                                       \displaystyle -\frac{1}{2y^{\frac{1}{2}}}\frac{dy}{dx} = -\frac{1}{2x^{\frac{1}{2}}}
  6. [Implicit Differentiation] Isolate \displaystyle \frac{dy}{dx}:                                                               \displaystyle \frac{dy}{dx} = \frac{2y^{\frac{1}{2}}}{2x^{\frac{1}{2}}}
  7. [Implicit Differentiation] Simplify:                                                                 \displaystyle \frac{dy}{dx} = \frac{y^{\frac{1}{2}}}{x^{\frac{1}{2}}}

<u>Step 3: Evaluate</u>

  1. Substitute in point [Derivative]:                                                                     \displaystyle \frac{dy}{dx} = \frac{(4)^{\frac{1}{2}}}{(1)^{\frac{1}{2}}}
  2. Exponents:                                                                                                     \displaystyle \frac{dy}{dx} = \frac{2}{1}
  3. Division:                                                                                                         \displaystyle \frac{dy}{dx} = 2

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Implicit Differentiation

Book: College Calculus 10e

6 0
3 years ago
Which term describes the relationship between L A and 2 B, if the m LA= 84º and m 2 B = 96º7
Daniel [21]

Answer:

Supplementary

Step-by-step explanation:

84 plus 96 equals 180 degrees

supplementary angles are angles that add up to 180 so their relationship is supplementary

3 0
3 years ago
Other questions:
  • Chelsea drew two parallel lines KL and MN intersected by a transversal PQ, as shown below.
    11·2 answers
  • For 103 consecutive days, a process engineer has measured the temperature of champagne bottles as they are made ready for servin
    5·1 answer
  • The path traveled by a bottlenose dolphin as it jumps out of water is modeled by the equation y = −0.4x2 + 3x, where y is the he
    6·2 answers
  • X=6 what is the slope
    11·1 answer
  • Which data set has an outlier? 6, 13, 13, 15, 15, 18, 18, 22 4, 4, 4, 8, 9, 9, 11, 18 2, 3, 5, 7, 8, 8, 9, 10, 12, 17 3, 6, 7, 7
    5·1 answer
  • Simply 8y(y - 4) + 3y(y+2)
    12·1 answer
  • What is the perimeter of a cross section parallel to the base of a cube whose edges are 16 inches each?
    8·1 answer
  • PLEASE ANSWER MY QUESTION IT IS URGENT I AM BEING TIMED
    11·1 answer
  • Write the prime factorization of the numerator and the denominator of 16/36
    15·1 answer
  • Victor's class is going on a field trip.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!