Answer:
The answer is below
Step-by-step explanation:
Plotting the following constraints using the online geogebra graphing tool:
x + 3y ≤ 9 (1)
5x + 2y ≤ 20 (2)
x≥1 and y≥2 (3)
From the graph plot, the solution to the constraint is A(1, 2), B(1, 2.67) and C(3, 2).
We need to minimize the objective function C = 5x + 3y. Therefore:
At point A(1, 2): C = 5(1) + 3(2) = 11
At point B(1, 2.67): C = 5(1) + 3(2.67) = 13
At point C(3, 2): C = 5(3) + 3(2) = 21
Therefore the minimum value of the objective function C = 5x + 3y is at point A(1, 2) which gives a minimum value of 11.
Answer:
B
Step-by-step explanation:
The wording in the problem statement is ...
... "less than 3 years"
... "at least 3. but less than 6 years"
so we expect the inequality symbols to look like ...
... 0 ≤ x < 3
... 3 ≤ x < 6
These match <em>the second piecewise function</em>.
Answer:
1300
Step-by-step explanation:
Let the amount put in the station's tank = x
4(400 + x) = 8100 - x Remove the brackets
1600 + 4x = 8100 - x Subtract 1600 from both sides
1600 - 1600 + 4x = 8100 - 1600 - x Do the subtraction
4x = 6500 - x Add x to both sides
4x + x = 6500 - x + x
5x = 6500 Divide by 5
5x/5 = 6500/5
x = 1300
1300 gallons were added to the station's tank.