First, you must know these formula d(e^f(x) = f'(x)e^x dx, e^a+b=e^a.e^b, and d(sinx) = cosxdx, secx = 1/ cosx
(secx)dy/dx=e^(y+sinx), implies <span>dy/dx=cosx .e^(y+sinx), and then
</span>dy=cosx .e^(y+sinx).dx, integdy=integ(cosx .e^(y+sinx).dx, equivalent of
integdy=integ(cosx .e^y.e^sinx)dx, integdy=e^y.integ.(cosx e^sinx)dx, but we know that d(e^sinx) =cosx e^sinx dx,
so integ.d(e^sinx) =integ.cosx e^sinx dx,
and e^sinx + C=integ.cosx e^sinxdx
finally, integdy=e^y.integ.(cosx e^sinx)dx=e^2. (e^sinx) +C
the answer is
y = e^2. (e^sinx) +C, you can check this answer to calculate dy/dx
Answer:
- 41.3 mm
- 4.86 m
- 420 cm
- 7.06 m
- 2.2 cm
- 5.93 m
- 255 cm
- 79 cm
- 46.9 mm
- 3.29 m
Step-by-step explanation:
Answer:
x = 1 , y = 2
Step-by-step explanation:
Solve for substitution
10 times larger than a thousand. Also one decimal place larger
Answer:
-2/5
Step-by-step explanation:

Expand parentheses:

Hope this helps!