Answer:
When there are numbers like that next to the radical it means multiply. like this: 2<u>√9</u>. You would first figure out the square root. <u>Square root of 9</u> is 3. 2 times 3 is 6.
After you figure out those problems, you just need to put the number, x, and y in an equation with 2 unknowns.
Step-by-step explanation:
Answer:
:D
Step-by-step explanation:
*) 2/4+3i
2+3i
I'm not sure is that right or wrong
The missing values represented by x and y are 8 and 20, that is
(x, y) = (8, 20)
The function y = 16 + 0.5x is a linear equation that can be solved graphically. This means the values of both variables x and y can be found on different points along the straight-line graph.
The ordered pairs simply mean for every value of x, there is a corresponding value of y.
The 2-column table has values for x and y which all satisfy the equation y = 16 + 0.5x. Taking the first row, for example, the pair is given as (-4, 14).
This means when x equals negative 4, y equals 14.
Where y = 16 + 0.5x
y = 16 + 0.5(-4)
y = 16 + (-2)
y = 16 - 2
y = 14
Therefore the first pair, just like the other four pairs all satisfy the equation.
Hence, looking at the options given, we can determine which satisfies the equation
(option 1) When x = 0
y = 16 + 0.5(0)
y = 16 + 0
y = 16
(0, 16)
(option 2) When x = 5
y = 16 + 0.5(5)
y = 16 + 2.5
y = 18.5
(5, 18.5)
(option 3) When x = 8
y = 16 + 0.5(8)
y = 16 + 4
y = 20
(8, 20)
From our calculations, the third option (8, 20) is the correct ordered pair that would fill in the missing values x and y.
To learn more about the straight line visit:
brainly.com/question/1852598
#SPJ1
Answer:
Arc DE = 90°
m<GAB = 82°
Arc DC = 49°
Step-by-step explanation:
Given:
m<EAF = 74°
m<EAD = right angle = 90°
Arc BG = 82°
Required:
Arc DE,
<GAB, and
Arc DC
Solution:
Recall that the central angle measure = the intercepted arc measure.
Therefore:
✔️Arc DE = m<EAD
Arc DE = 90° (Substitution)
✔️m<GAB = arc BG
m<GAB = 82° (Substitution)
✔️Arc DC = m<CAD
Find m<CAD
m<CAD = ½(180 - m<GAB)
m<CAD = ½(180 - 82)
m<CAD = 49°
Arc DC = m<CAD
Arc DC = 49°