3r+n2−r+5−2n+2<span />=3r+n2+−r+5+−2n+2=3r+n2+−r+5+−2n+2<span />=(n2)+(−2n)+(3r+−r)+(5+2)<span />=n2+−2n+2r+7<span /><span />
=n2−2n+2r+7
Answer:
1/4 is the common ratio for the geometric sequence
Answer:
1 lap in 8/10 (4/5) of a minute
Answer is B, 8/10 minute!
⭐ Please consider brainliest! ⭐
✉️ If any further questions, inbox me! ✉️
Step-by-step explanation:
Answer:
![g(x)=-2\sqrt[3]x](https://tex.z-dn.net/?f=g%28x%29%3D-2%5Csqrt%5B3%5Dx)
or

Step-by-step explanation:
Given
![f(x) = \sqrt[3]x](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Csqrt%5B3%5Dx)
Required
Write a rule for g(x)
See attachment for grid
From the attachment, we have:


We can represent g(x) as:

So, we have:
![g(x) = n * \sqrt[3]x](https://tex.z-dn.net/?f=g%28x%29%20%3D%20n%20%2A%20%5Csqrt%5B3%5Dx)
For:

![2 = n * \sqrt[3]{-1}](https://tex.z-dn.net/?f=2%20%3D%20n%20%2A%20%5Csqrt%5B3%5D%7B-1%7D)
This gives:

Solve for n


To confirm this value of n, we make use of:

So, we have:
![-2 = n * \sqrt[3]1](https://tex.z-dn.net/?f=-2%20%3D%20n%20%2A%20%5Csqrt%5B3%5D1)
This gives:

Solve for n


Hence:
![g(x) = n * \sqrt[3]x](https://tex.z-dn.net/?f=g%28x%29%20%3D%20n%20%2A%20%5Csqrt%5B3%5Dx)
![g(x)=-2\sqrt[3]x](https://tex.z-dn.net/?f=g%28x%29%3D-2%5Csqrt%5B3%5Dx)
or:
