Answer:
Plant cells have a cell wall, as well as a cell membrane.
Explanation:
In plants, the cell wall surrounds a cell membrane. This gives the plant cell its unique or rectangular shape. animal cells simply have a cell membrane, but no cell wall.
Answer:
False
Explanation:
The histones that are more positively charged, tight hardly to negatively charged DNA. So, enzymes, such as acetyltransferases, that reduce the positive charge of histones promote transcription.
Chromatin structure and its modifications can change the package of the DNA and consequently, alter the gene expression. The most common modifications of the chromatin are covalent modifications such as acetylation/deacetylation (by acetyltransferases and eacetylases), methylation (by methyltransferases), and phosphorylation (by kinases). This is the way of gene expression regulation.
The effects of modifications are different, for example methylation promotes condensation of the chromatin and as a consequence, prevents binding of transcription factors to the DNA (transcription is repressed).
Acetylation loosens the association between nucleosomes and DNA (because it neutralizes the positive charge of histones) and consequently promotes transcription. Deacetylation is a process opposite to acetylation.
Answer:
I hope i helped
Explanation:
A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA. Dictated by specific hydrogen bonding patterns, "Watson–Crick" base pairs (guanine–cytosine and adenine–thymine) allow the DNA helix to maintain a regular helical structure that is subtly dependent on its nucleotide sequence. The complementary nature of this based-paired structure provides a redundant copy of the genetic information encoded within each strand of DNA. The regular structure and data redundancy provided by the DNA double helix make DNA well suited to the storage of genetic information, while base-pairing between DNA and incoming nucleotides provides the mechanism through which DNA polymerase replicates DNA and RNA polymerase transcribes DNA into RNA. Many DNA-binding proteins can recognize specific base-pairing patterns that identify particular regulatory regions of genes.
1. A book sitting on top of a table
2. A soccer ball rolling on the ground
3. A person driving a car to a stop
1) metaphase 1, metaphase 2
3) meiosis, half
4) eggs, sperms
5) mitosis, same