Answer:
Option (B)
Step-by-step explanation:
There are two lines on the graph representing the system of equations.
First line passes through two points (-3, 1) and (-2, 3).
Slope of the line = 
= 
m = 2
Equation of the line passing through (x', y') and slope = m is,
y - y' = m(x - x')
Equation of the line passing through (-3, 1) and slope = 2 will be,
y - 1 = 2(x + 3)
y = 2x + 7 ----------(1)
Second line passes through (0, 1) and (-1, 4) and y-intercept 'b' of the line is 1.
Let the equation of this line is,
y = mx + b
Slope 'm' = 
= 
= -3
Here 'b' = 1
Therefore, equation of the line will be,
y = -3x + 1 ---------(2)
From equation (1) and (2),
2x + 7 = -3x + 1
5x = -6
x = 
x = 
From equation (1),
y = 2x + 7
y = 
= 
= 
= 
Therefore, exact solution of the system of equations is
.
Option (B) will be the answer.
Answer:
y=4/5x
Step-by-step explanation:
y=mx+b
plug in y and x into each equation and solve!
4=5m+b
8=10m+b
4=5m
m=4/5
b=0
y=4/5x+0
To find the percent you take 18 and divide it by 48, so you get 9/24 or 3/8, by using calculator you get .375 which is 37.5% then you multiply by 100 to convert a decimal to a percentage.
Observe attached picture.
On picture we have:
A = height of flagpole = x ft
B = length of flagpole's shadow = 24 ft
C = height of sign = 6 ft
D = length of sign's shadow = 3 ft
When we draw a picture representing this problem we can also add another line marked in red. This way we can see that we have two right-angle triangles. We can see that both have same angle marked with α.
We can apply trigonometry rules to find height of flagpole.
From small triangle containing sign we can find tangens function:

Similarly we can do for large triangle containing flagpole:

We see that these two equations have same left sides. This means that their right sides must also be same:

We can solve for A:

Height of flagpole is 48 feet.