Distributive property: a(b + c) = ab + ac
4n - 2 - 2n = 2(2n - 1 - n)
4n - 2 - 2n = 2n - 2 = 2(n - 1)
Multiply 3/4 and 4 and you simply get 3 (these are the amount of tickets bought) Then divide the cost by tickets which results in 2.05
(3/4) x 4=3
6.15 / 3 = 2.05
Let c = hypotenuse and a = leg 1 and b = leg 2. If c² > a² + b², then it is obtuse. If it is less, then it is acute. I hope it helps.
Problem 3: Let x = price of bag of pretzels Let y = price of box of granola bars
We have Lesley's purchase: 4x+2y=13.50
And Landon's: 1x+5y=17.55
We can use the elimination method. Let's negate Landon's purchase by multiplying by -1. -1x-5y=-17.55
We add this four times to Lesley's purchase to eliminate the x variable.
2y-20y=13.50-70.2
-18y=-56.7
y = $3.15 = Price of box of granola bars
Plug back into Landon's purchase to solve for pretzels.
x+5*3.15=17.55
x+15.75=17.55
x = $1.80 = price of bag of pretzels
Problem 4.
Let w = number of wood bats sold
Let m = number of metal bats sold
From sales information we have: w + m = 23
24w+30m=606
Substitution works well here. Solve for w in the first equation, w = 23 - m, and plug this into the second.
24*(23-m)+30m=606
552-24m+30m=606
6m=54
m=9 = number of metal bats sold
Therefore since w = 23-m, w = 23-9 = 14. 14 wooden bats were sold.